OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 1 — Jan. 3, 2011

Photophysical mechanisms of collagen modification by 80 MHz femtosecond laser

Vladimir Hovhannisyan, Ara Ghazaryan, Yung-Fang Chen, Shean-Jen Chen, and Chen-Yuan Dong  »View Author Affiliations

Optics Express, Vol. 18, Issue 23, pp. 24037-24047 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1341 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photophysical mechanisms of collagen photomodification (CFP) by the use of a 80 MHz, 780 nm femtosecond titanium-sapphire laser were investigated. Our observation that the decrease in collagen second harmonic generation and increase in two-photon autofluorescence intensity occurred primarily at sites where photoproducts were present suggested that the photoproducts may act to facilitate the CFP process. Laser power study of CFP indicated that the efficiency of the process depended on the sixth power of the laser intensity. Furthermore, it was demonstrated that CFP can be used for bending and cutting of collagen fibers and creating 3D patterns within collagen matrix with high precision (~2 μm).

© 2010 OSA

OCIS Codes
(170.5810) Medical optics and biotechnology : Scanning microscopy
(190.4180) Nonlinear optics : Multiphoton processes
(350.3390) Other areas of optics : Laser materials processing
(350.4600) Other areas of optics : Optical engineering

ToC Category:
Laser Microfabrication

Original Manuscript: July 7, 2010
Revised Manuscript: October 3, 2010
Manuscript Accepted: October 11, 2010
Published: November 3, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Vladimir Hovhannisyan, Ara Ghazaryan, Yung-Fang Chen, Shean-Jen Chen, and Chen-Yuan Dong, "Photophysical mechanisms of collagen modification by 80 MHz femtosecond laser," Opt. Express 18, 24037-24047 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. G. Cima, J. P. Vacanti, C. Vacanti, D. Ingber, D. Mooney, and R. Langer, “Tissue engineering by cell transplantation using degradable polymer substrates,” J. Biomech. Eng. 113(2), 143–151 (1991). [CrossRef] [PubMed]
  2. S. Yang, K. F. Leong, Z. Du, and C. K. Chua, “The design of scaffolds for use in tissue engineering. Part I. Traditional factors,” Tissue Eng. 7(6), 679–689 (2001). [CrossRef] [PubMed]
  3. J. J. Klawitter and S. F. Hulbert, “Application of porous ceramics for the attachment of load bearing internal orthopedic applications,” Biomed. Mater. Symp. 5(6), 161–229 (1971). [CrossRef]
  4. S. J. Hollister, “Porous scaffold design for tissue engineering,” Nat. Mater. 4(7), 518–524 (2005). [CrossRef] [PubMed]
  5. C. H. Lee, A. Singla, and Y. Lee, “Biomedical applications of collagen,” Int. J. Pharm. 221(1-2), 1–22 (2001). [CrossRef] [PubMed]
  6. J. M. Pachence, “Collagen-based devices for soft tissue repair,” J. Biomed. Mater. Res. 33(1), 35–40 (1996). [CrossRef] [PubMed]
  7. V. Venugopalan, A. Guerra, K. Nahen, and A. Vogel, “Role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation,” Phys. Rev. Lett. 88(7), 078103 (2002). [CrossRef] [PubMed]
  8. T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Quantum Electron. 5(4), 902–910 (1999). [CrossRef]
  9. K. Koenig, O. Krauss, and I. Riemann, “Intratissue surgery with 80 MHz nanojoule femtosecond laser pulses in the near infrared,” Opt. Express 10(3), 171–176 (2002). [PubMed]
  10. Y. Liu, Sh. Sun, S. Singha, M. R. Cho, and R. J. Gordon, “3D femtosecond laser patterning of collagen for directed cell attachment,” Biomaterials 26(22), 4597–4605 (2005). [CrossRef] [PubMed]
  11. J. Bunte, S. Barcikowski, T. Puester, T. Burmester, M. Brose, and T. Ludwig, “Secondary hazards: Particle and X-ray emission,” In: Femtosecond Technology for Technical and Medical Applications. Topics Appl Phys96, F. Dausinger, F. Lichtner, H. Lubatschowski, editors (Springer, Berlin, 2004), p. 309–321.
  12. M. S. Hutson and X. Ma, “Plasma and cavitation dynamics during pulsed laser microsurgery in vivo,” Phys. Rev. Lett. 99(15), 158104 (2007). [CrossRef] [PubMed]
  13. M. Oujja, S. Pérez, E. Fadeeva, J. Koch, B. N. Chichkov, and M. Castillejo, “Three dimensional microstructuring of biopolymers by femtosecond laser irradiation,” Appl. Phys. Lett. 95(26), 263703 (2009). [CrossRef]
  14. L. P. Cunningham, M. P. Veilleux, and P. J. Campagnola, “Freeform multiphoton excited microfabrication for biological applications using a rapid prototyping CAD-based approach,” Opt. Express 14(19), 8613–8621 (2006). [CrossRef] [PubMed]
  15. S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev. 2(1-2), 100–111 (2008). [CrossRef]
  16. A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005). [CrossRef]
  17. V. Hovhannisyan, W. Lo, C. Hu, S. J. Chen, and C. Y. Dong, “Dynamics of femtosecond laser photo-modification of collagen fibers,” Opt. Express 16(11), 7958–7968 (2008). [CrossRef] [PubMed]
  18. V. Hovhannisyan, W. Lo, C. Hu, S. J. Chen, and C. Y. Dong, “Non-ablative processing of biofibers by femtosecond IR laser,” Proc. SPIE-OSA 7373, 73731X1–7 (2009).
  19. M. Wisniewski, A. Sionkowskaa, H. Kaczmarek, S. Lazare, V. Tokarev, and C. Belin, “Spectroscopic study of a KrF excimer laser treated surface of the thin collagen films,” J. Photochem. Photobiol., A 188(2-3), 192–199 (2007). [CrossRef]
  20. E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003). [CrossRef] [PubMed]
  21. V. A. Hovhannisyan, P. -J. Su, and C. -Y. Dong, “Quantifying thermodynamics of collagen thermal denaturation by second harmonic generation imaging,” Appl. Phys. Lett. 94(23), 233902 (2009). [CrossRef]
  22. C. Y. Hsiao, Y. Sun, W. L. Chen, C. K. Tung, W. Lo, J. W. Su, S. J. Lin, S. H. Jee, G. J. Jan, and C. Y. Dong, “Effects of different immersion media in multiphoton imaging of the epithelium and dermis of human skin,” Microsc. Res. Tech. 69(12), 992–997 (2006). [CrossRef] [PubMed]
  23. N. I. Kiskin, R. Chillingworth, J. A. McCray, D. Piston, and D. Ogden, “The efficiency of two-photon photolysis of a “caged” fluorophore, o-1-(2-nitrophenyl)ethylpyranine, in relation to photodamage of synaptic terminals,” Eur. Biophys. J. 30(8), 588–604 (2002). [CrossRef] [PubMed]
  24. R. A. Meldrum, S. W. Botchway, C. W. Wharton, and G. J. Hirst, “Nanoscale spatial induction of ultraviolet photoproducts in cellular DNA by three-photon near-infrared absorption,” EMBO Rep. 4(12), 1144–1149 (2003). [CrossRef] [PubMed]
  25. A. A. Oraevsky, D. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to femtosecond laser pulses: relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2(4), 801–809 (1996). [CrossRef]
  26. D. N. Nikogosyan and H. Gorner, “Laser-induced photodecomposition of amino acids and peptides: extrapolation to corneal collagen,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1107–1115 (1999). [CrossRef]
  27. S. Gaspard, M. Forster, C. Huber, C. Zafiu, G. Trettenhahn, W. Kautek, and M. Castillejo, “Femtosecond laser processing of biopolymers at high repetition rate,” Phys. Chem. Chem. Phys. 10(40), 6174–6181 (2008). [CrossRef] [PubMed]
  28. A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J. 80(4), 2029–2036 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1675 KB)     
» Media 2: MOV (3423 KB)     
» Media 3: MOV (3170 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited