OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 1 — Jan. 3, 2011

Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands

Alexander A. Gilerson, Anatoly A. Gitelson, Jing Zhou, Daniela Gurlin, Wesley Moses, Ioannis Ioannou, and Samir A. Ahmed  »View Author Affiliations


Optics Express, Vol. 18, Issue 23, pp. 24109-24125 (2010)
http://dx.doi.org/10.1364/OE.18.024109


View Full Text Article

Enhanced HTML    Acrobat PDF (821 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Remote sensing algorithms that use red and NIR bands for the estimation of chlorophyll-a concentration [Chl] can be more effective in inland and coastal waters than algorithms that use blue and green bands. We tested such two-band and three-band red-NIR algorithms using comprehensive synthetic data sets of reflectance spectra and inherent optical properties related to various water parameters and a very consistent in situ data set from several lakes in Nebraska, USA. The two-band algorithms tested with MERIS bands were Rrs(708)/Rrs(665) and Rrs(753)/Rrs(665). The three-band algorithm with MERIS bands was in the form R3 = [Rrs−1(665) − Rrs−1(708)] × Rrs(753). It is shown that the relationships of both Rrs(708)/Rrs(665) and R3 with [Chl] do not depend much on the absorption by CDOM and non-algal particles, or the backscattering properties of water constituents, and can be defined in terms of water absorption coefficients at the respective bands as well as the phytoplankton specific absorption coefficient at 665 nm. The relationship of the latter with [Chl] was established for [Chl] > 1 mg/m3 and then further used to develop algorithms which showed a very good match with field data and should not require regional tuning.

© 2010 OSA

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: August 25, 2010
Revised Manuscript: October 25, 2010
Manuscript Accepted: October 26, 2010
Published: November 3, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Alexander A. Gilerson, Anatoly A. Gitelson, Jing Zhou, Daniela Gurlin, Wesley Moses, Ioannis Ioannou, and Samir A. Ahmed, "Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands," Opt. Express 18, 24109-24125 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-23-24109


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Moore, J. Aiken, and J. Lavender, “The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in Case II waters: application to MERIS,” Int. J. Remote Sens. 20(9), 1713–1733 (1999). [CrossRef]
  2. J. Aiken and G. Moore, “ATBD case 2 bright pixel atmospheric correction,” Center for Coastal & Marine Sciences, Plymouth Marine Laboratory, U.K., Rep, PO-TN-MEL-GS 4, 0005 (2000).
  3. M. Wang and W. Shi, “Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies,” Geophys. Res. Lett. 32(13), L13606 (2005), doi:. [CrossRef]
  4. M. Wang and W. Shi, “The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing,” Opt. Express 15(24), 15722–15733 (2007). [CrossRef] [PubMed]
  5. R. Doerffer and H. Schiller, “MERIS regional coastal and lake case 2 water project atmospheric correction ATBD,” Institute for Coastal Research, GKSS Research Center, Geesthacht, Germany, Rep, GKSS-KOF-MERIS-ATB D01, 1 (2008).
  6. P. J. Werdell, S. W. Bailey, B. A. Franz, L. W. Harding, G. C. Feldman, and C. R. McClain, “Regional and seasonal variability of chlorophyll-a in Chesapeake Bay as observed by SeaWiFS and MODIS-Aqua,” Remote Sens. Environ. 113(6), 1319–1330 (2009). [CrossRef]
  7. A. A. Gitelson, G. Keydan, and V. Shishkin, “Inland waters quality assessment from satellite data in visible range of the spectrum,” Sov. Remote Sens. 6, 28–36 (1985).
  8. R. P. Stumpf and M. A. Tyler, “Satellite detection of bloom and pigment distributions in estuaries,” Remote Sens. Environ. 24(3), 385–404 (1988). [CrossRef]
  9. A. A. Gitelson, “The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration,” Int. J. Remote Sens. 13(17), 3367–3373 (1992). [CrossRef]
  10. A. A. Gitelson, G. Dall’Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation,” Remote Sens. Environ. 112(9), 3582–3593 (2008). [CrossRef]
  11. H. R. Gordon, “Diffuse reflectance of the ocean: the theory of its augmentation by chlorophyll a fluorescence at 685 nm,” Appl. Opt. 18(8), 1161–1166 (1979). [CrossRef] [PubMed]
  12. A. Vasilkov and O. Kopelevich, “Reasons for the appearance of the maximum near 700 nm in the radiance spectrum emitted by the ocean layer,” Oceanology (Mosc.) 22, 697–701 (1982).
  13. J. F. Schalles, “Optical Remote Sensing Techniques to Estimate Phytoplankton Chlorophyll a Concentrations in Coastal Waters with Varying Suspended Matter and CDOM Concentrations,” in Remote Sensing of Aquatic Coastal Ecosystem Processes: Science and Management Applications, L.L. Richardson and E.F. LeDrew, eds. (Springer, 2006), Chap. 3.
  14. G. Dall'Olmo, A. A. Gitelson, and D. C. Rundquist, “Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters,” Geophys. Res. Lett. 30(18), 1938 (2003), doi:. [CrossRef]
  15. L. Han and D. Rundquist, “Comparison of NIR/Red ratio and first derivative of reflectance in estimating algal-chlorophyll concentration: a case study in a turbid reservoir,” Remote Sens. Environ. 62(3), 253–261 (1997). [CrossRef]
  16. C. Le, Y. Li, Y. Zha, D. Sun, C. Huang, and H. Lu, “A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China,” Remote Sens. Environ. 113(6), 1175–1182 (2009). [CrossRef]
  17. H. J. Gons, M. Rijkeboer, and K. G. Ruddick, “A chlorophyll-retrieval algorithm for satellite imagery (Medium Resolution Imaging Spectrometer) of inland and coastal waters,” J. Plankton Res. 24(9), 947–951 (2002). [CrossRef]
  18. K. G. Ruddick, H. J. Gons, M. Rijkeboer, and G. Tilstone, “Optical remote sensing of chlorophyll a in case 2 waters by use of an adaptive two-band algorithm with optimal error properties,” Appl. Opt. 40(21), 3575–3585 (2001). [CrossRef]
  19. J. Gower, S. King, G. Borstad, and L. Brown, “Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer,” Int. J. Remote Sens. 26(9), 2005–2012 (2005). [CrossRef]
  20. G. Dall’Olmo and A. A. Gitelson, “Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results,” Appl. Opt. 44(3), 412–422 (2005). [CrossRef] [PubMed]
  21. A. A. Gitelson, J. Schalles, and C. M. Hladik, “Remote chlorophyll-a retrieval in turbid productive estuarine: Chesapeake Bay case study,” Remote Sens. Environ. 109(4), 464–472 (2007). [CrossRef]
  22. G. Dall’Olmo and A. A. Gitelson, “Effect of bio-optical parameter variability and uncertainties in reflectance measurements on the remote estimation of chlorophyll-a concentration in turbid productive waters: modeling results,” Appl. Opt. 45(15), 3577–3592 (2006). [CrossRef] [PubMed]
  23. C. D. Mobley, Light and Water. Radiative Transfer in Natural Waters (Academic Press, New York, 1994).
  24. A. Gilerson, J. Zhou, S. Hlaing, I. Ioannou, J. Schalles, B. Gross, F. Moshary, and S. Ahmed, “Fluorescence component in the reflectance spectra from coastal waters. Dependence on water composition,” Opt. Express 15(24), 15702–15721 (2007). [CrossRef] [PubMed]
  25. Z. P. Lee, http://www.ioccg.org/groups/OCAG_data.html .
  26. A. M. Ciotti, M. R. Lewis, and J. J. Cullen, “Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient,” Limnol. Oceanogr. 47(2), 404–417 (2002). [CrossRef]
  27. A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization,” J. Geophys. Res. 100(C7), 13321–13332 (1995). [CrossRef]
  28. A. A. Gitelson, D. Gurlin, W. J. Moses, and T. Barrow, “A bio-optical algorithm for the remote estimation of the chlorophyll-a concentration in case 2 waters,” Environ. Res. Lett. 4(4), 045003 (2009), doi: 10.1088/1748-9326/4/4/045003. [CrossRef]
  29. W. J. Moses, A. A. Gitelson, S. Berdnikov, and V. Povazhnyy, “Satellite Estimation of Chlorophyll-a Concentration Using the Red and NIR Bands of MERIS—The Azov Sea Case Study,” IEEE Geosci. Remote Sens. Lett. 6(4), 845–849 (2009). [CrossRef]
  30. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93(D9), 10909–10924 (1988). [CrossRef]
  31. R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters (200-800 nm),” Appl. Opt. 20(2), 177–184 (1981). [CrossRef] [PubMed]
  32. J. Zhou, A. Gilerson, I. Ioannou, S. Hlaing, J. Schalles, B. Gross, F. Moshary, and S. Ahmed, “Retrieving quantum yield of sun-induced chlorophyll fluorescence near surface from hyperspectral in-situ measurement in productive water,” Opt. Express 16(22), 17468–17483 (2008). [CrossRef] [PubMed]
  33. P. Gege, and A. Albert, “A tool for inverse modeling of spectral measurements in deep and shallow waters,” in Remote Sensing of Aquatic Coastal Ecosystem Processes: Science and Management Applications, L.L. Richardson and E.F. LeDrew, eds. Chap. 4, Springer, 2006.
  34. J. E. O'Reilly, and 24 Coauthors, “SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3,” in NASA Tech. Memo. 2000–206892, Vol. 11, S. B. Hooker and E. R. Firestone, eds., (NASA Goddard Space Flight Center, Greenbelt, MD, 2000) 49 pp.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited