OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 5, Iss. 5 — Mar. 17, 2010

Absorption, refraction and scattering in analyzer-based imaging: comparison of different algorithms

Paul Claude Diemoz, Paola Coan, Christian Glaser, and Alberto Bravin  »View Author Affiliations


Optics Express, Vol. 18, Issue 4, pp. 3494-3509 (2010)
http://dx.doi.org/10.1364/OE.18.003494


View Full Text Article

Enhanced HTML    Acrobat PDF (515 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Many mathematical methods have been so far proposed in order to separate absorption, refraction and ultra-small angle scattering information in phase-contrast analyzer-based images. These algorithms all combine a given number of images acquired at different positions of the crystal analyzer along its rocking curve. In this paper a comprehensive quantitative comparison between five of the most widely used phase extraction algorithms based on the geometrical optics approximation is presented: the diffraction-enhanced imaging (DEI), the extended diffraction-enhanced imaging (E-DEI), the generalized diffraction-enhanced (G-DEI), the multiple-image radiography (MIR) and the Gaussian curve fitting (GCF). The algorithms are theoretically analyzed in terms of their validity conditions and experimentally compared by using geometrical phantoms providing various amounts of absorption, refraction and scattering. The presented work shows that, due to their specific validity conditions, the considered algorithms produce results that may greatly differ, especially in the case of highly refracting and/or highly scattering materials. The various extraction algorithms are also applied to images of a human bone-cartilage sample. The aim is to validate the results obtained on geometrical phantoms and prove the efficiency of the different algorithms for applications on biological samples.

© 2010 OSA

OCIS Codes
(100.5070) Image processing : Phase retrieval
(340.7440) X-ray optics : X-ray imaging

ToC Category:
X-ray Optics

History
Original Manuscript: July 20, 2009
Revised Manuscript: November 10, 2009
Manuscript Accepted: November 22, 2009
Published: February 3, 2010

Virtual Issues
Vol. 5, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Paul Claude Diemoz, Paola Coan, Christian Glaser, and Alberto Bravin, "Absorption, refraction and scattering in analyzer-based imaging: comparison of different algorithms," Opt. Express 18, 3494-3509 (2010)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-18-4-3494


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Goetz, M. P. Kalashnikov, Yu. A. Mikhaĭlov, G. V. Sklizkov, S. I. Fedotov, E. Förster, and P. Zaumseil, “Measurements of the parameters of shell targets for laser thermonuclear fusion using an X-ray Schlieren method,” Sov. J. Quantum Electr. 9(5), 607–610 (1979). [CrossRef]
  2. A. Bravin, “Exploiting the X-ray refraction contrast with an analyser: the state of the art,” J. Phys. D Appl. Phys. 36(10A), A24–A29 (2003). [CrossRef]
  3. T. J. Davis, “A unified treatment of small-angle X-ray scattering, X-ray refraction and absorption using the Rytov approximation,” Acta Crystallogr. A 50(6), 686–690 (1994). [CrossRef]
  4. K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Morgan, and R. A. Lewis, “Linear systems with slowly varying transfer functions and their application to x-ray phase-contrast imaging,” J. Phys. D Appl. Phys. 37(19), 2746–2750 (2004). [CrossRef]
  5. Y. I. Nesterets, P. Coan, T. E. Gureyev, A. Bravin, P. Cloetens, and S. W. Wilkins, “On qualitative and quantitative analysis in analyser-based imaging,” Acta Crystallogr. A 62(Pt 4), 296–308 (2006). [CrossRef] [PubMed]
  6. Y. I. Nesterets, T. E. Gureyev, D. Paganin, K. M. Pavlov, and S. W. Wilkins, “Quantitative diffraction-enhanced X-ray imaging of weak objects,” J. Phys. D Appl. Phys. 37(8), 1262–1274 (2004). [CrossRef]
  7. D. Paganin, T. E. Gureyev, K. M. Pavlov, R. A. Lewis, and M. Kitchen, “Phase retrieval using coherent imaging systems with linear transfer functions,” Opt. Commun. 234(1-6), 87–105 (2004). [CrossRef]
  8. Y. I. Nesterets, T. E. Gureyev, and S. W. Wilkins, “Polychromaticity in the combined propagation-based/analyser-based phase-contrast imaging,” J. Phys. D Appl. Phys. 38(24), 4259–4271 (2005). [CrossRef]
  9. D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. H. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42(11), 2015–2025 (1997). [CrossRef] [PubMed]
  10. M. N. Wernick, O. Wirjadi, D. Chapman, Z. Zhong, N. P. Galatsanos, Y. Yang, J. G. Brankov, O. Oltulu, M. A. Anastasio, and C. Muehleman, “Multiple-image radiography,” Phys. Med. Biol. 48(23), 3875–3895 (2003). [CrossRef]
  11. E. Pagot, P. Cloetens, S. Fiedler, A. Bravin, P. Coan, J. Baruchel, J. Härtwig, and W. Thomlinson, “A method to extract quantitative information in analyser-based X-ray phase contrast imaging,” Appl. Phys. Lett. 82(20), 3421–3423 (2003). [CrossRef]
  12. Z. F. Huang, K. J. Kang, and Y. G. Yang, “Extraction methods of phase information for X-ray diffraction enhanced imaging,” Nucl. Instrum. Meth. A 579(1), 218–222 (2007). [CrossRef]
  13. A. Maksimenko, “Nonlinear extension of the x-ray diffraction enhanced imaging,” Appl. Phys. Lett. 90(3), 154106 (2007). [CrossRef]
  14. C. H. Hu, L. Zhang, H. Li, and S. Lo, “Comparison of refraction information extraction methods in diffraction enhanced imaging,” Opt. Express 16(21), 16704–16710 (2008). [CrossRef] [PubMed]
  15. L. Rigon, F. Arfelli, and R. H. Menk, “Three-image diffraction enhanced imaging algorithm to extract absorption, refraction, and ultrasmall-angle scattering,” Appl. Phys. Lett. 90(11), 114102 (2007). [CrossRef]
  16. P. Coan, A. Peterzol, S. Fiedler, C. Ponchut, J. C. Labiche, and A. Bravin, “Evaluation of imaging performance of a taper optics CCD; FReLoN’ camera designed for medical imaging,” J. Synchrotron Radiat. 13(Pt 3), 260–270 (2006). [CrossRef] [PubMed]
  17. P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, “Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays,” Appl. Phys. Lett. 75(19), 2912–2914 (1999). [CrossRef]
  18. O. Oltulu, Z. Zhong, M. O. Hasnah, M. N. Wernick, and D. Chapman, “Extraction of extinction, refraction and absorption properties in diffraction enhanced imaging,” J. Phys. D Appl. Phys. 36(17), 2152–2156 (2003). [CrossRef]
  19. M. O. Hasnah, Z. Zhong, C. Parham, H. Zhang, and D. Chapman, “Compositional images from the diffraction enhanced Imaging technique,” Nucl. Instrum. Meth. A 572(2), 953–957 (2007). [CrossRef]
  20. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature 384(6607), 335–338 (1996). [CrossRef]
  21. C. Raven, A. Snigirev, I. Snigireva, P. Spanne, A. Souvorov, and V. Kohn, “Phase-contrast microtomography with coherent high-energy synchrotron X rays,” Appl. Phys. Lett. 69(13), 1826–1828 (1996). [CrossRef]
  22. C. Muehleman, S. Majumdar, A. S. Issever, F. Arfelli, R. H. Menk, L. Rigon, G. Heitner, B. Reime, J. Metge, A. Wagner, K. E. Kuettner, and J. Mollenhauer, “X-ray detection of structural orientation in human articular cartilage,” Osteoarthritis Cartilage 12(2), 97–105 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited