OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 8 — Aug. 26, 2011

Fine depth resolution of two-photon absorption-induced photoacoustic microscopy using low-frequency bandpass filtering

Yoshihisa Yamaoka, Mika Nambu, and Tetsuro Takamatsu  »View Author Affiliations

Optics Express, Vol. 19, Issue 14, pp. 13365-13377 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1144 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photoacoustic microscopy usually uses high-frequency photoacoustic waves, which provide not only high spatial resolution but also limitation of the penetration depth. In this study, we developed two-photon absorption-induced photoacoustic microscopy (TP-PAM) to improve the depth resolution without use of high-frequency photoacoustic waves. The spatial resolution in TP-PAM is determined by two-photon absorption. TP-PAM with a 20X objective lens (numerical aperture: 0.4) provides an optically-determined depth resolution of 44.9 ± 2.0 μm, which is estimated by the full width at half maximum of the photoacoustic signal from an infinitely small target, using low-frequency bandpass filtering of photoacoustic waves. The combination of TP-PAM and frequency filtering provides high spatial resolution.

© 2011 OSA

OCIS Codes
(170.5120) Medical optics and biotechnology : Photoacoustic imaging
(070.2615) Fourier optics and signal processing : Frequency filtering
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:

Original Manuscript: December 20, 2010
Revised Manuscript: March 14, 2011
Manuscript Accepted: March 18, 2011
Published: June 27, 2011

Virtual Issues
Vol. 6, Iss. 8 Virtual Journal for Biomedical Optics

Yoshihisa Yamaoka, Mika Nambu, and Tetsuro Takamatsu, "Fine depth resolution of two-photon absorption-induced photoacoustic microscopy using low-frequency bandpass filtering," Opt. Express 19, 13365-13377 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Diaspro, Confocal and Two-Photon Microscopy (Wiley-Liss, 2002).
  2. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006). [CrossRef] [PubMed]
  3. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009). [CrossRef] [PubMed]
  4. G. Ku, K. Maslov, L. Li, and L. V. Wang, “Photoacoustic microscopy with 2-μm transverse resolution,” J. Biomed. Opt. 15(2), 021302 (2010). [CrossRef] [PubMed]
  5. Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 34(12), 1771–1773 (2009). [CrossRef] [PubMed]
  6. R. Bitton, R. Zemp, J. Yen, L. V. Wang, and K. K. Shung, “A 3-D high-frequency array based 16 channel photoacoustic microscopy system for in vivo micro-vascular imaging,” IEEE Trans. Med. Imaging 28(8), 1190–1197 (2009). [CrossRef] [PubMed]
  7. S. Hu, K. Maslov, and L. V. Wang, “Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy,” Opt. Express 17(9), 7688–7693 (2009). [CrossRef] [PubMed]
  8. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006). [CrossRef]
  9. C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett. 35(19), 3195–3197 (2010). [CrossRef] [PubMed]
  10. C. Guittet, F. Ossant, L. Vaillant, and M. Berson, “In vivo high-frequency ultrasonic characterization of human dermis,” IEEE Trans. Biomed. Eng. 46(6), 740–746 (1999). [CrossRef] [PubMed]
  11. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008). [CrossRef] [PubMed]
  12. L. V. Wang, ed., Photoacoustic Imaging and Spectroscopy (CRC press, Boca Raton, 2009).
  13. C. R. Hill, J. C. Bamber, and G. R. t. Haar, eds., Physical principles of medical ultrasonics (John Weily & Sons, Chichester, 2004).
  14. Y. Bae, J. J. Song, and Y. B. Kim, “Photoacoustic study of two-photon absorption in hexagonal ZnS,” J. Appl. Phys. 53(1), 615–619 (1982). [CrossRef]
  15. J. J. Barrett and M. J. Berry, “Photoacoustic Raman spectroscopy (PARS) using cw laser sources,” Appl. Phys. Lett. 34(2), 144–146 (1979). [CrossRef]
  16. P. Sathy, R. Philip, V. P. N. Nampoori, and C. P. G. Vallabhan, “Observation of two-photon absorption in rhodamine 6G using photoacoustic technique,” Opt. Commun. 74(5), 313–317 (1990). [CrossRef]
  17. W. H. Press, Numerical recipes in C: the art of scientific computing (Cambridge University Press, 2002).
  18. P. C. Li, C. W. Wei, and Y. L. Sheu, “Subband photoacoustic imaging for contrast improvement,” Opt. Express 16(25), 20215–20226 (2008). [CrossRef] [PubMed]
  19. Z. Guo, S. Hu, and L. V. Wang, “Calibration-free absolute quantification of optical absorption coefficients using acoustic spectra in 3D photoacoustic microscopy of biological tissue,” Opt. Lett. 35(12), 2067–2069 (2010). [CrossRef] [PubMed]
  20. J. P. Hermann and J. Ducuing, “Dispersion of the two-photon cross section in rhodamine dyes,” Opt. Commun. 6(2), 101–105 (1972). [CrossRef]
  21. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003). [CrossRef] [PubMed]
  22. P. Theer and W. Denk, “On the fundamental imaging-depth limit in two-photon microscopy,” J. Opt. Soc. Am. A 23(12), 3139–3149 (2006). [CrossRef] [PubMed]
  23. A. Yariv, Introduction to Optical Electronics (Holt, Rinehart and Winston, Inc., New York, 1985).
  24. H. Urey, “Spot size, depth-of-focus, and diffraction ring intensity formulas for truncated Gaussian beams,” Appl. Opt. 43(3), 620–625 (2004). [CrossRef] [PubMed]
  25. V. N. Mahajan, “Uniform versus Gaussian beams: a comparison of the effects of diffraction, obscuration, and aberrations,” J. Opt. Soc. Am. 3(4), 470–485 (1986). [CrossRef]
  26. J. M. Khosrofian and B. A. Garetz, “Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data,” Appl. Opt. 22(21), 3406–3410 (1983). [CrossRef] [PubMed]
  27. L. H. Wang, and H.-I. Wu, Biomedical Optics (John Wiley & Sons, Hoboken, 2007). [PubMed]
  28. R. A. McFarlane and L. D. Hess, “Photoacoustic measurements of ion-implanted and laser-annealed GaAs,” Appl. Phys. Lett. 36(2), 137–139 (1980). [CrossRef]
  29. National Astronomical Observatory, Rika Nenpyo (Chronological Scientific Tables 2008) (Maruzen Co., Ltd., 2008).
  30. S. Boonsang, “Photoacoustic generation mechanisms and measurement systems for biomedical applications,” Int. J. Appl. Biomed. Eng. 2(1), 17–23 (2009).
  31. H. Vargas and L. C. M. Miranda, “Photoacoustic and related photothermal techniques,” Phys. Rep. 161(2), 43–101 (1988). [CrossRef]
  32. C. Eggeling, A. Volkmer, and C. A. Seidel, "Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy," Chemphyschem 6(5), 791-804 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited