OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 8 — Aug. 26, 2011

Temporal control of local plasmon distribution on Au nanocrosses by ultra-broadband femtosecond laser pulses and its application for selective two-photon excitation of multiple fluorophores

Takuya Harada, Keiichiro Matsuishi, Yu Oishi, Keisuke Isobe, Akira Suda, Hiroyuki Kawan, Hideaki Mizuno, Atsushi Miyawaki, Katsumi Midorikawa, and Fumihiko Kannari  »View Author Affiliations


Optics Express, Vol. 19, Issue 14, pp. 13618-13627 (2011)
http://dx.doi.org/10.1364/OE.19.013618


View Full Text Article

Enhanced HTML    Acrobat PDF (1415 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically demonstrate spatiotemporal control of local plasmon distribution on Au nanocrosses, which have different aspect ratios, by chirped ultra-broadband femtosecond laser pulses. We also demonstrate selective excitation of fluorescence proteins using this spatiotemporal local plasmon control technique for applications to two-photon excited fluorescence microscopy.

© 2011 OSA

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(180.2520) Microscopy : Fluorescence microscopy
(240.6680) Optics at surfaces : Surface plasmons
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 24, 2011
Revised Manuscript: May 15, 2011
Manuscript Accepted: May 26, 2011
Published: June 29, 2011

Virtual Issues
Vol. 6, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Takuya Harada, Keiichiro Matsuishi, Yu Oishi, Keisuke Isobe, Akira Suda, Hiroyuki Kawan, Hideaki Mizuno, Atsushi Miyawaki, Katsumi Midorikawa, and Fumihiko Kannari, "Temporal control of local plasmon distribution on Au nanocrosses by ultra-broadband femtosecond laser pulses and its application for selective two-photon excitation of multiple fluorophores," Opt. Express 19, 13618-13627 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-14-13618


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995).
  2. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71(23), 235408 (2005). [CrossRef]
  3. A. Bouhelier, R. Bachelot, J. S. Im, G. P. Wiederrecht, G. Lerondel, S. Kostcheev, and P. Royer, “Electromagnetic interactions in plasmonic nanoparticle arrays,” J. Phys. Chem. B 109(8), 3195–3198 (2005). [CrossRef] [PubMed]
  4. C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. X. Gao, L. Gou, S. E. Hunyadi, and T. Li, “Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications,” J. Phys. Chem. B 109(29), 13857–13870 (2005). [CrossRef] [PubMed]
  5. M. Maillard, S. Giorgio, and M.-P. Pileni, “Tuning the size of silver nanodisks with similar aspect ratios: Synthesis and optical properties,” J. Phys. Chem. B 107(11), 2466–2470 (2003). [CrossRef]
  6. S. Chen, Z. Fan, and D. L. Carroll, “Silver nanodisks: Synthesis, characterization, and self-assembly,” J. Phys. Chem. B 106(42), 10777–10781 (2002). [CrossRef]
  7. S. L. Westcott, J. B. Jackson, C. Radloff, and N. J. Halas, “Relative contributions to the plasmon line shape of metal nanoshells,” Phys. Rev. B 66(15), 155431 (2002). [CrossRef]
  8. Y. N. Xia and N. J. Halas, “Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures,” MRS Bull. 30(05), 338–348 (2005). [CrossRef]
  9. E. Stefan Kooij and B. Poelsema, “Shape and size effects in the optical properties of metallic nanorods,” Phys. Chem. Chem. Phys. 8(28), 3349–3357 (2006). [CrossRef] [PubMed]
  10. T. Brixner, F. J. Garcia de Abajo, J. Schneider, C. Spindler, and W. Pfeiffer, “Ultrafast adaptive optical near-field control,” Phys. Rev. B 73(12), 125437 (2006). [CrossRef]
  11. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007). [CrossRef] [PubMed]
  12. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett. 88(6), 067402–067405 (2002). [CrossRef] [PubMed]
  13. R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68(10), 1500–1503 (1992). [CrossRef] [PubMed]
  14. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Gerber, “Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses,” Science 282(5390), 919–922 (1998). [CrossRef] [PubMed]
  15. D. Meshulach and Y. Silberberg, “Coherent quantum control of two-photon transitions by a femtosecond laser pulse,” Nature 396(6708), 239–242 (1998). [CrossRef]
  16. T. Brixner and G. Gerber, “Femtosecond polarization pulse shaping,” Opt. Lett. 26(8), 557–559 (2001). [CrossRef] [PubMed]
  17. F. Weise and A. Lindinger, “Full control over the electric field using four liquid crystal arrays,” Opt. Lett. 34(8), 1258–1260 (2009). [CrossRef] [PubMed]
  18. Y. Esumi, M. D. Kabir, and F. Kannari, “Spatiotemporal vector pulse shaping of femtosecond laser pulses with a multi-pass two-dimensional spatial light modulator,” Opt. Express 17(21), 19153–19159 (2009). [CrossRef] [PubMed]
  19. G. Lévêque and O. J. F. Martin, “Narrow-band multiresonant plasmon nanostructure for the coherent control of light: an optical analog of the xylophone,” Phys. Rev. Lett. 100(11), 117402 (2008). [CrossRef] [PubMed]
  20. A. Taflove and K. R. Umashankar, “The finite-difference time-domain (FD-TD) method for electromagnetic scattering and interaction problems,” J. Electromagn. Waves Appl. 1(3), 243–267 (1987). [CrossRef]
  21. J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys. 114(2), 185–200 (1994). [CrossRef]
  22. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(8), 302–307 (1966). [CrossRef]
  23. A. Taflove,Computational Electrodynamics (Artech House, Norwood, MA, 1995).
  24. G. D. Smith, Numerical Solution of Partial Differential Equations (Oxford Univ. Press, Oxford, UK. 1965).
  25. D. W. Peaceman and H. H. Rachford., “The numerical solution of parabolic and elliptic differential equations,” J. Soc. Ind. Appl. Math. 3(1), 28–41 (1955). [CrossRef]
  26. G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations,” IEEE Trans. Electromagn. Compat. EMC-23(4), 377–382 (1981). [CrossRef]
  27. A. Taflove and M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problem using time-dependent Maxwell's equations,” IEEE Trans. Microw. Theory Tech. 23(8), 623–630 (1975). [CrossRef]
  28. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990). [CrossRef] [PubMed]
  29. K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200(2), 83–104 (2000). [CrossRef] [PubMed]
  30. K. Isobe, W. Watanabe, S. Matsunaga, T. Higashi, K. Fukui, and K. Itoh, “Multi-spectral two-photon excited fluorescence microscopy using supercontinuum light source,” Jpn. J. Appl. Phys. 44(4), L167–L169 (2005). [CrossRef]
  31. C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996). [CrossRef] [PubMed]
  32. G. Y. Fan, H. Fujisaki, A. Miyawaki, R. K. Tsay, R. Y. Tsien, and M. H. Ellisman, “Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons,” Biophys. J. 76(5), 2412–2420 (1999). [CrossRef] [PubMed]
  33. P. Allcock and D. L. Andrews, “Two-photon fluorescence: Resonance energy transfer,” J. Chem. Phys. 108(8), 3089–3095 (1998). [CrossRef]
  34. K. G. Heinze, A. Koltermann, and P. Schwille, “Simultaneous two-photon excitation of distinct labels for dual-color fluorescence crosscorrelation analysis,” Proc. Natl. Acad. Sci. U.S.A. 97(19), 10377–10382 (2000). [CrossRef] [PubMed]
  35. K. Isobe, A. Suda, M. Tanaka, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Multifarious control of two-photon excitation of multiple fluorophores achieved by phase modulation of ultra-broadband laser pulses,” Opt. Express 17(16), 13737–13746 (2009). [CrossRef] [PubMed]
  36. H. Hashimoto, K. Isobe, A. Suda, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Measurement of two-photon excitation spectra of fluorescent proteins with nonlinear Fourier-transform spectroscopy,” Appl. Opt. 49(17), 3323–3329 (2010). [CrossRef] [PubMed]
  37. M. Comstock, V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference 6; binary phase shaping,” Opt. Express 12(6), 1061–1066 (2004). [CrossRef] [PubMed]
  38. R. S. Pillai, C. Boudoux, G. Labroille, N. Olivier, I. Veilleux, E. Farge, M. Joffre, and E. Beaurepaire, “Multiplexed two-photon microscopy of dynamic biological samples with shaped broadband pulses,” Opt. Express 17(15), 12741–12752 (2009). [CrossRef] [PubMed]
  39. G. Labroille, R. S. Pillai, X. Solinas, C. Boudoux, N. Olivier, E. Beaurepaire, and M. Joffre, “Dispersion-based pulse shaping for multiplexed two-photon fluorescence microscopy,” Opt. Lett. 35(20), 3444–3446 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited