OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 8 — Aug. 26, 2011

Assessment of corneal dynamics with high-speed swept source Optical Coherence Tomography combined with an air puff system

David Alonso-Caneiro, Karol Karnowski, Bartlomiej J. Kaluzny, Andrzej Kowalczyk, and Maciej Wojtkowski  »View Author Affiliations

Optics Express, Vol. 19, Issue 15, pp. 14188-14199 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2161 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel method and instrument for in vivo imaging and measurement of the human corneal dynamics during an air puff. The instrument is based on high-speed swept source optical coherence tomography (ssOCT) combined with a custom adapted air puff chamber from a non-contact tonometer, which uses an air stream to deform the cornea in a non-invasive manner. During the short period of time that the deformation takes place, the ssOCT acquires multiple A-scans in time (M-scan) at the center of the air puff, allowing observation of the dynamics of the anterior and posterior corneal surfaces as well as the anterior lens surface. The dynamics of the measurement are driven by the biomechanical properties of the human eye as well as its intraocular pressure. Thus, the analysis of the M-scan may provide useful information about the biomechanical behavior of the anterior segment during the applanation caused by the air puff. An initial set of controlled clinical experiments are shown to comprehend the performance of the instrument and its potential applicability to further understand the eye biomechanics and intraocular pressure measurements. Limitations and possibilities of the new apparatus are discussed.

© 2011 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: April 29, 2011
Revised Manuscript: June 26, 2011
Manuscript Accepted: June 27, 2011
Published: July 11, 2011

Virtual Issues
Vol. 6, Iss. 8 Virtual Journal for Biomedical Optics

David Alonso-Caneiro, Karol Karnowski, Bartlomiej J. Kaluzny, Andrzej Kowalczyk, and Maciej Wojtkowski, "Assessment of corneal dynamics with high-speed swept source Optical Coherence Tomography combined with an air puff system," Opt. Express 19, 14188-14199 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. Luce, “Determining in vivo biomechanical properties of the cornea with an ocular response analyzer,” J. Cataract Refract. Surg. 31(1), 156–162 (2005). [CrossRef] [PubMed]
  2. R. L. Stamper, “A history of intraocular pressure and its measurement,” Optom. Vis. Sci. 88(1), E16–E28 (2011). [CrossRef] [PubMed]
  3. D. Ortiz, D. Pinero, M. H. Shabayek, F. Arnalich-Montiel, and J. L. Alió, “Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes,” J. Cataract Refract. Surg. 33(8), 1371–1375 (2007). [CrossRef] [PubMed]
  4. K. F. Damji, R. H. Muni, and R. M. Munger, “Influence of corneal variables on accuracy of intraocular pressure measurement,” J. Glaucoma 12(1), 69–80 (2003). [CrossRef] [PubMed]
  5. G. J. Orssengo and D. C. Pye, “Determination of the true intraocular pressure and modulus of elasticity of the human cornea in vivo,” Bull. Math. Biol. 61(3), 551–572 (1999). [CrossRef] [PubMed]
  6. J. Liu and C. J. Roberts, “Influence of corneal biomechanical properties on intraocular pressure measurement: quantitative analysis,” J. Cataract Refract. Surg. 31(1), 146–155 (2005). [CrossRef] [PubMed]
  7. F. A. La Rosa, R. L. Gross, and S. Orengo-Nania, “Central corneal thickness of Caucasians and African Americans in glaucomatous and nonglaucomatous populations,” Arch,” Ophthalmol-chic 119, 23–27 (2001).
  8. M. M. Whitacre, R. A. Stein, and K. Hassanein, “The effect of corneal thickness on applanation tonometry,” Am. J. Ophthalmol. 115(5), 592–596 (1993). [PubMed]
  9. F. A. Medeiros and R. N. Weinreb, “Evaluation of the influence of corneal biomechanical properties on intraocular pressure measurements using the ocular response analyzer,” J. Glaucoma 15(5), 364–370 (2006). [CrossRef] [PubMed]
  10. M. R. Ford, W. J. Dupps, A. M. Rollins, A. S. Roy, and Z. Hu, “Method for optical coherence elastography of the cornea,” J. Biomed. Opt. 16(1), 016005–016007 (2011). [CrossRef] [PubMed]
  11. X. He and J. Liu, “A quantitative ultrasonic spectroscopy method for noninvasive determination of corneal biomechanical properties,” Invest. Ophthalmol. Vis. Sci. 50(11), 5148–5154 (2009). [CrossRef] [PubMed]
  12. K. W. Hollman, S. Y. Emelianov, J. H. Neiss, G. Jotyan, G. J. R. Spooner, T. Juhasz, R. M. Kurtz, and M. O’Donnell, “Strain imaging of corneal tissue with an ultrasound elasticity microscope,” Cornea 21(1), 68–73 (2002). [CrossRef] [PubMed]
  13. R. Ambrósio, L. P. Nogueira, D. L. Caldas, B. M. Fontes, A. Luz, J. O. Cazal, M. R. Alves, and M. W. Belin, “Evaluation of corneal shape and biomechanics before LASIK,” Int. Ophthalmol. Clin. 51(2), 11–38 (2011). [CrossRef] [PubMed]
  14. C. J. Roberts, A. M. Mahmoud, I. Ramos, D. Caldas, R. Siqueira da Silva, and J. R. Ambrósio, “Factors influencing corneal deformation and estimation of intraocular pressure,” in ARVO(2011), pp. e-abstract 4384.
  15. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009). [CrossRef] [PubMed]
  16. P. Targowski, M. Wojtkowski, A. Kowalczyk, T. Bajraszewski, M. Szkulmowski, and I. Gorczynska, “Complex spectral OCT in human eye imaging in vivo,” Opt. Commun. 229(1-6), 79–84 (2004). [CrossRef]
  17. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol-chic 112, 1584–1589 (1994). [CrossRef]
  18. D. Huang, Y. Li, and S. Radhakrishnan, “Optical coherence tomography of the anterior segment of the eye,” Ophthalmol. Clin. North Am. 17(1), 1–6 (2004). [CrossRef] [PubMed]
  19. M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol-chic 113, 325–332 (1995). [CrossRef]
  20. J. M. Gonzalez-Meijome, A. Cerviño, G. Carracedo, A. Queiros, S. Garcia-Lázaro, and T. Ferrer-Blasco, “High-resolution spectral domain optical coherence tomography technology for the visualization of contact lens to cornea relationships,” Cornea 29(12), 1359–1367 (2010). [CrossRef] [PubMed]
  21. B. J. Kaluzny, J. J. Kaluzny, A. Szkulmowska, I. Gorczynska, M. Szkulmowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Spectral optical coherence tomography: a new imaging technique in contact lens practice,” Ophthalmic Physiol. Opt. 26(2), 127–132 (2006). [CrossRef] [PubMed]
  22. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010). [CrossRef] [PubMed]
  23. A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010). [CrossRef] [PubMed]
  24. S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol-chic 119, 1179–1185 (2001).
  25. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17(17), 14880–14894 (2009). [CrossRef] [PubMed]
  26. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13(26), 10652–10664 (2005). [CrossRef] [PubMed]
  27. C. M. Eigenwillig, W. Wieser, B. R. Biedermann, and R. Huber, “Subharmonic Fourier domain mode locking,” Opt. Lett. 34(6), 725–727 (2009). [CrossRef] [PubMed]
  28. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31(20), 2975–2977 (2006). [CrossRef] [PubMed]
  29. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006). [CrossRef] [PubMed]
  30. R. C. Lin, M. A. Shure, A. M. Rollins, J. A. Izatt, and D. Huang, “Group index of the human cornea at 1.3-microm wavelength obtained in vitro by optical coherence domain reflectometry,” Opt. Lett. 29(1), 83–85 (2004). [CrossRef] [PubMed]
  31. J. Ø. Hjortdal, “Regional elastic performance of the human cornea,” J. Biomech. 29(7), 931–942 (1996). [CrossRef] [PubMed]
  32. J. Liu and X. He, “Corneal stiffness affects IOP elevation during rapid volume change in the eye,” Invest. Ophthalmol. Vis. Sci. 50(5), 2224–2229 (2009). [CrossRef] [PubMed]
  33. A. Faucher, J. Grégoire, and P. Blondeau, “Accuracy of Goldmann tonometry after refractive surgery,” J. Cataract Refract. Surg. 23(6), 832–838 (1997). [PubMed]
  34. R. Montés-Micó and W. N. Charman, “Intraocular pressure after excimer laser myopic refractive surgery,” Ophthalmic Physiol. Opt. 21(3), 228–235 (2001). [CrossRef] [PubMed]
  35. J. B. Randleman, “Post-laser in-situ keratomileusis ectasia: current understanding and future directions,” Curr. Opin. Ophthalmol. 17(4), 406–412 (2006). [CrossRef] [PubMed]
  36. C. Schweitzer, C. J. Roberts, A. M. Mahmoud, J. Colin, S. Maurice-Tison, and J. Kerautret, “Screening of forme fruste keratoconus with the ocular response analyzer,” Invest. Ophthalmol. Vis. Sci. 51(5), 2403–2410 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited