OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 9 — Oct. 3, 2011

Hybrid optical tweezers for dynamic micro-bead arrays

Yoshio Tanaka, Shogo Tsutsui, Mitsuru Ishikawa, and Hiroyuki Kitajima  »View Author Affiliations

Optics Express, Vol. 19, Issue 16, pp. 15445-15451 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2480 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Dynamic micro-bead arrays offer great flexibility and potential as sensing tools in various scientific fields. Two optical trapping techniques, the GPC method using a spatial light modulator and a mechanical scanning method using galvano mirrors, are combined in a hybrid optical tweezers system to handle dynamic micro-bead arrays. This system provides greater versatility while the GPC method creates massive micro-bead arrays in a 2D space, where the trapped beads can be manipulated smoothly and very quickly in a 3D space using the mechanical scanning method. Four typical examples are demonstrated in real time.

© 2011 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(150.5758) Machine vision : Robotic and machine control

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: June 3, 2011
Revised Manuscript: July 12, 2011
Manuscript Accepted: July 12, 2011
Published: July 27, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Yoshio Tanaka, Shogo Tsutsui, Mitsuru Ishikawa, and Hiroyuki Kitajima, "Hybrid optical tweezers for dynamic micro-bead arrays," Opt. Express 19, 15445-15451 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W.-H. Tan and S. Takeuchi, “A trap-and-release integrated microfluidic system for dynamic microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 104(4), 1146–1151 (2007). [CrossRef] [PubMed]
  2. A. Terray, J. Oakey, and D. W. M. Marr, “Microfluidic control using colloidal devices,” Science 296(5574), 1841–1844 (2002). [CrossRef] [PubMed]
  3. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005). [CrossRef] [PubMed]
  4. H. Noda, Y. Kohara, K. Okano, and H. Kambara, “Automated bead alignment apparatus using a single bead capturing technique for fabrication of a miniaturized bead-based DNA probe array,” Anal. Chem. 75(13), 3250–3255 (2003). [CrossRef] [PubMed]
  5. C. D. Onal and M. Sitti, “Visual servoing-based autonomous 2-D manipulation of microparticles using a nanoprobe,” IEEE Trans. Contr. Syst. Technol. 15(5), 842–852 (2007). [CrossRef]
  6. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]
  7. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1–6), 169–175 (2002). [CrossRef]
  8. R. L. Eriksen, V. R. Daria, and J. Glückstad, “Fully dynamic multiple-beam optical tweezers,” Opt. Express 10(14), 597–602 (2002). [PubMed]
  9. G. S. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. J. Laczik, “Assembly of 3-dimensional structures using programmable holographic optical tweezers,” Opt. Express 12(22), 5475–5480 (2004). [CrossRef] [PubMed]
  10. C. Mio and D. W. M. Marr, “Optical trapping for the manipulation of colloidal particles,” Adv. Mater. (Deerfield Beach Fla.) 12(12), 917–920 (2000). [CrossRef]
  11. Y. Tanaka, H. Kawada, S. Tsutsui, M. Ishikawa, and H. Kitajima, “Dynamic micro-bead arrays using optical tweezers combined with intelligent control techniques,” Opt. Express 17(26), 24102–24111 (2009). [CrossRef] [PubMed]
  12. R. D. L. Hanes, M. C. Jenkins, and S. U. Egelhaaf, “Combined holographic-mechanical optical tweezers: construction, optimization, and calibration,” Rev. Sci. Instrum. 80(8), 083703 (2009). [CrossRef] [PubMed]
  13. J. Glückstad and D. Palima, Generalized Phase Contrast (Springer, 2009), Chaps. 6 and 8.
  14. D. Palima and J. Glückstad, “Comparison of generalized phase contrast and computer generated holography for laser image projection,” Opt. Express 16(8), 5338–5349 (2008). [CrossRef] [PubMed]
  15. P. J. Rodrigo, V. R. Daria, and J. Glückstad, “Four-dimensional optical manipulation of colloidal particles,” Appl. Phys. Lett. 86(7), 074103 (2005). [CrossRef]
  16. P. J. Rodrigo, R. L. Eriksen, V. R. Daria, and J. Glueckstad, “Interactive light-driven and parallel manipulation of inhomogeneous particles,” Opt. Express 10(26), 1550–1556 (2002). [PubMed]
  17. Y. Huang, J. Wan, M. C. Cheng, Z. Zhang, S. M. Jhiang, and C. H. Menq, “Three-axis rapid steering of optically propelled micro/nanoparticles,” Rev. Sci. Instrum. 80(6), 063107 (2009). [CrossRef] [PubMed]
  18. D. H. Ballard and C. M. Brown, Computer Vision (Prentice-Hall, 1982), Chaps. 3 and 4. [PubMed]
  19. Y. Tanaka, H. Kawada, K. Hirano, M. Ishikawa, and H. Kitajima, “Automated manipulation of non-spherical micro-objects using optical tweezers combined with image processing techniques,” Opt. Express 16(19), 15115–15122 (2008). [CrossRef] [PubMed]
  20. R. W. Applegate, J. Squier, T. Vestad, J. Oakey, and D. V. M. Marr, “Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars,” Opt. Express 12(19), 4390–4398 (2004). [CrossRef] [PubMed]
  21. X. Trepat, L. Deng, S. S. An, D. Navajas, D. J. Tschumperlin, W. T. Gerthoffer, J. P. Butler, and J. J. Fredberg, “Universal physical responses to stretch in the living cell,” Nature 447(7144), 592–595 (2007). [CrossRef] [PubMed]
  22. C. Pacoret, R. Bowman, G. Gibson, S. Haliyo, D. Carberry, A. Bergander, S. Régnier, and M. Padgett, “Touching the microworld with force-feedback optical tweezers,” Opt. Express 17(12), 10259–10264 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: MOV (1886 KB)     
» Media 2: MOV (1138 KB)     
» Media 3: MOV (1853 KB)     
» Media 4: MOV (2726 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited