OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 9 — Oct. 3, 2011

Massive photothermal trapping and migration of particles by a tapered optical fiber

Hongbao Xin, Xingmin Li, and Baojun Li  »View Author Affiliations

Optics Express, Vol. 19, Issue 18, pp. 17065-17074 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1160 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A simple but highly efficient method for particles or bacteria trapping and removal from water is of great importance for local water purification, particularly, for sanitation. Here, we report a massive photothermal trapping and migration of dielectric particles (SiO2, 2.08-µm diameter) in water by using a tapered optical fiber (3.1-µm diameter for taper). With a laser beam of 1.55 µm (170 mW) injected into the fiber, particles moved towards the position, which is about 380 µm away from the tip of the fiber, and assembled at a 290 µm × 100 µm spindle-shaped region. The highest assembly speed of particles is 22.1 ind./s and the highest moving velocity is 20.5 µm/s, which were induced by both negative photophoresis and temperature gradient. The number of assembled particles can reach 10,150 in 15 minutes. With a move of the fiber, the assembled particles will also migrate. We found that, when the fiber was moved 172 µm away from its original location, almost all of the assembled 10,150 particles were migrated to a new location in 140 s with a distance of 172 µm from their original location.

© 2011 OSA

OCIS Codes
(350.5340) Other areas of optics : Photothermal effects
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: June 30, 2011
Revised Manuscript: August 3, 2011
Manuscript Accepted: August 12, 2011
Published: August 16, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Hongbao Xin, Xingmin Li, and Baojun Li, "Massive photothermal trapping and migration of particles by a tapered optical fiber," Opt. Express 19, 17065-17074 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970). [CrossRef]
  2. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997). [CrossRef] [PubMed]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]
  4. K. Dholakia and P. Reece, “Optical micromanipulation takes hold,” Nano Today 1(1), 18–27 (2006). [CrossRef]
  5. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992). [CrossRef] [PubMed]
  6. L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008). [CrossRef] [PubMed]
  7. H. Liu, G. J. Newton, R. Nakamura, K. Hashimoto, and S. Nakanishi, “Electrochemical characterization of a single electricity-producing bacterial cell of Shewanella by using optical tweezers,” Angew. Chem. Int. Ed. Engl. 49(37), 6596–6599 (2010). [CrossRef] [PubMed]
  8. C. Bustamante, Z. Bryant, and S. B. Smith, “Ten years of tension: single-molecule DNA mechanics,” Nature 421(6921), 423–427 (2003). [CrossRef] [PubMed]
  9. C. D'Helon, E. W. Dearden, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Measurement of the optical force and trapping range of a single-beam gradient optical trap for micron-sized latex spheres,” J. Mod. Opt. 41(3), 595–601 (1994). [CrossRef]
  10. O. Jovanovic, “Photophoresis−light induced motion of particles suspended in gas,” J. Quant. Spectrosc. Radiat. Transf. 110(11), 889–901 (2009). [CrossRef]
  11. C. Y. Soong, W. K. Li, C. H. Liu, and P. Y. Tzeng, “Theoretical analysis for photophoresis of a microscale hydrophobic particle in liquids,” Opt. Express 18(3), 2168–2182 (2010). [CrossRef] [PubMed]
  12. A. S. Desyatnikov, V. G. Shvedov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, “Photophoretic manipulation of absorbing aerosol particles with vortex beams: theory versus experiment,” Opt. Express 17(10), 8201–8211 (2009). [CrossRef] [PubMed]
  13. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Giant optical manipulation,” Phys. Rev. Lett. 105(11), 118103 (2010). [CrossRef] [PubMed]
  14. M. Tanaka, H. Monjushiro, and H. Watarai, “Laser photophoretic migration with periodic expansion-contraction motion of photo-absorbing microemulsion droplets in water,” Langmuir 20(25), 10791–10797 (2004). [CrossRef] [PubMed]
  15. H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photophoretic assembly and migration of dielectric particles and Escherichia coli in liquids using a subwavelength diameter optical fiber,” Lab Chip 11(13), 2241–2246 (2011). [CrossRef] [PubMed]
  16. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18(3), 3137–3142 (2010). [CrossRef] [PubMed]
  17. S. Duhr and D. Braun, “Why molecules move along a temperature gradient,” Proc. Natl. Acad. Sci. U.S.A. 103(52), 19678–19682 (2006). [CrossRef] [PubMed]
  18. H. R. Jiang, H. Wada, N. Yoshinaga, and M. Sano, “Manipulation of colloids by a nonequilibrium depletion force in a temperature gradient,” Phys. Rev. Lett. 102(20), 208301 (2009). [CrossRef] [PubMed]
  19. M. Ichikawa, H. Ichikawa, K. Yoshikawa, and Y. Kimura, “Extension of a DNA molecule by local heating with a laser,” Phys. Rev. Lett. 99(14), 148104 (2007). [CrossRef] [PubMed]
  20. P. Baaske, C. J. Wienken, P. Reineck, S. Duhr, and D. Braun, “Optical thermophoresis for quantifying the buffer dependence of aptamer binding,” Angew. Chem. Int. Ed. Engl. 49(12), 2238–2241 (2010). [CrossRef] [PubMed]
  21. H. B. Xin and B. J. Li, “Targeted delivery and controllable release of nanoparticles using a defect-decorated optical nanofiber,” Opt. Express 19(14), 13285–13290 (2011). [CrossRef] [PubMed]
  22. H. B. Xin, H. X. Lei, Y. Zhang, X. M. Li, and B. J. Li, “Photothermal trapping of dielectric particles by optical fiber-ring,” Opt. Express 19(3), 2711–2719 (2011). [CrossRef] [PubMed]
  23. K. F. Palmer and D. Williams, “Optical properties of water in the near infrared,” J. Opt. Soc. Am. 64(8), 1107–1110 (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (2627 KB)     
» Media 2: MOV (3473 KB)     
» Media 3: MOV (3502 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited