OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 9 — Oct. 3, 2011

Optical trapping through the localized surface-plasmon resonance of engineered gold nanoblock pairs

Yoshito Tanaka and Keiji Sasaki  »View Author Affiliations


Optics Express, Vol. 19, Issue 18, pp. 17462-17468 (2011)
http://dx.doi.org/10.1364/OE.19.017462


View Full Text Article

Enhanced HTML    Acrobat PDF (1003 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have investigated the plasmonic trapping of dielectric nanoparticles by using engineered gold nanoblock pairs with ~5-nm gaps. Pairs with surface-plasmon resonance peaks at the incident wavelength allow the trapping of 350-nm-diameter nanoparticles with 200 W/cm2 laser intensities, and their plasmon resonance properties and trapping performance are drastically modified by varying the nanoblock size of ~20%. In addition, plasmon resonance properties of nanoblock pairs strongly depend on the direction of the linear polarization of the incident laser, which determines the trapping performance.

© 2011 OSA

OCIS Codes
(290.5870) Scattering : Scattering, Rayleigh
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: June 2, 2011
Revised Manuscript: July 21, 2011
Manuscript Accepted: August 19, 2011
Published: August 22, 2011

Virtual Issues
Vol. 6, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Yoshito Tanaka and Keiji Sasaki, "Optical trapping through the localized surface-plasmon resonance of engineered gold nanoblock pairs," Opt. Express 19, 17462-17468 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-18-17462


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Okamoto and S. Kawata, “Radiation force exerted on subwavelength particles near a nanoaperture,” Phys. Rev. Lett.83(22), 4534–4537 (1999). [CrossRef]
  2. P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, “Optical trapping and manipulation of nano-objects with an apertureless probe,” Phys. Rev. Lett.88(12), 123601 (2002). [CrossRef] [PubMed]
  3. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett.79(4), 645–648 (1997). [CrossRef]
  4. M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys.5(12), 915–919 (2009). [CrossRef]
  5. H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett.89(24), 246802 (2002). [CrossRef] [PubMed]
  6. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics2(6), 365–370 (2008). [CrossRef]
  7. M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett.9(10), 3387–3391 (2009). [CrossRef] [PubMed]
  8. W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett.10(3), 1006–1011 (2010). [CrossRef] [PubMed]
  9. Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” Phys. Chem. Lett.1(15), 2327–2333 (2010). [CrossRef]
  10. Y. Tanaka, H. Ishiguro, H. Fujiwara, Y. Yokota, K. Ueno, H. Misawa, and K. Sasaki, “Direct imaging of nanogap-mode plasmon-resonant fields,” Opt. Express19(8), 7726–7733 (2011). [PubMed]
  11. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys.120(1), 357–366 (2004). [CrossRef] [PubMed]
  12. M. Inoue and K. Ohtaka, “Surface enhanced Raman scattering by metal spheres. I. Cluster effect,” J. Phys. Soc. Jpn.52(11), 3853–3864 (1983). [CrossRef]
  13. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys.3(7), 477–480 (2007). [CrossRef]
  14. L. Huang, S. J. Maerkl, and O. J. F. Martin, “Integration of plasmonic trapping in a microfluidic environment,” Opt. Express17(8), 6018–6024 (2009). [CrossRef] [PubMed]
  15. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).
  16. K. Ueno, V. Mizeikis, S. Juodkazis, K. Sasaki, and H. Misawa, “Optical properties of nanoengineered gold blocks,” Opt. Lett.30(16), 2158–2160 (2005). [CrossRef] [PubMed]
  17. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express16(12), 9144–9154 (2008). [CrossRef] [PubMed]
  18. Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Surface enhanced Raman scattering from pseudoisocyanine on Ag nanoaggregates produced by optical trapping with a linearly polarized laser beam,” J. Phys. Chem. C113(27), 11856–11860 (2009). [CrossRef]
  19. Y. Tanaka, H. Yoshikawa, T. Itoh, and M. Ishikawa, “Laser-induced self-assembly of silver nanoparticles via plasmonic interactions,” Opt. Express17(21), 18760–18767 (2009). [CrossRef] [PubMed]
  20. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Optical scattering resonances of single and coupled dimer plasmonic nanoantennas,” Opt. Express15(26), 17736–17746 (2007). [CrossRef] [PubMed]
  21. J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem.262(2), 137–156 (1998). [CrossRef] [PubMed]
  22. K. Ueno, S. Juodkazis, T. Shibuya, V. Mizeikis, Y. Yokota, and H. Misawa, “Nanoparticle-enhanced photopolymerization,” J. Phys. Chem. C113(27), 11720–11724 (2009). [CrossRef]
  23. G. Baffou, R. Quidant, and C. Girard, “Thermoplasmonics modeling: a Green’s function approach,” Phys. Rev. B82(16), 165424 (2010). [CrossRef]
  24. Y. Tanaka, H. Yoshikawa, and H. Masuhara, “Two-photon fluorescence spectroscopy of individually trapped pseudoisocyanine J-aggregates in aqueous solution,” J. Phys. Chem. B110(36), 17906–17911 (2006). [CrossRef] [PubMed]
  25. C. Hosokawa, H. Yoshikawa, and H. Masuhara, “Optical assembling dynamics of individual polymer nanospheres investigated by single-particle fluorescence detection,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(6 Pt 1), 061410 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (799 KB)      QuickTime
» Media 2: MOV (3409 KB)      QuickTime
» Media 3: MOV (813 KB)      QuickTime
» Media 4: MOV (1326 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited