OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 2 — Feb. 1, 2012

Measurement of viscosity of lyotropic liquid crystals by means of rotating laser-trapped microparticles

Qingkun Liu, Theodor Asavei, Taewoo Lee, Halina Rubinsztein-Dunlop, Sailing He, and Ivan I. Smalyukh  »View Author Affiliations

Optics Express, Vol. 19, Issue 25, pp. 25134-25143 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1048 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a simple microrheology method to measure the viscosity coefficients of lyotropic liquid crystals. This approach is based on the use of a rotating laser-trapped optically anisotropic microsphere. In aligned liquid crystals that have negligible effect on trapping beam’s polarization, the optical torque is transferred from circularly polarized laser trapping beam to the optically anisotropic microparticle and creates the shear flow in the liquid crystalline fluid. The balance of optical and viscous torques yields the local effective viscosity coefficients of the studied lyotropic systems in cholesteric and lamellar phases. This simple yet powerful method is capable of probing viscosity of complex anisotropic fluids for small amounts of sample and even in the presence of defects that obstruct the use of conventional rheology techniques.

© 2011 OSA

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(160.1190) Materials : Anisotropic optical materials
(160.3710) Materials : Liquid crystals
(180.1790) Microscopy : Confocal microscopy
(180.6900) Microscopy : Three-dimensional microscopy
(180.4315) Microscopy : Nonlinear microscopy
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: September 27, 2011
Manuscript Accepted: November 11, 2011
Published: November 23, 2011

Virtual Issues
Vol. 7, Iss. 2 Virtual Journal for Biomedical Optics

Qingkun Liu, Theodor Asavei, Taewoo Lee, Halina Rubinsztein-Dunlop, Sailing He, and Ivan I. Smalyukh, "Measurement of viscosity of lyotropic liquid crystals by means of rotating laser-trapped microparticles," Opt. Express 19, 25134-25143 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, 2000).
  2. K. F. Wissbrun, “Rheology of rod-like polymers in the liquid crystalline state,” J. Rheol. (N.Y.N.Y.) 25(6), 619–662 (1981). [CrossRef]
  3. I.-H. Lin, D. S. Miller, P. J. Bertics, C. J. Murphy, J. J. de Pablo, and N. L. Abbott, “Endotoxin-induced structural transformations in liquid crystalline droplets,” Science 332(6035), 1297–1300 (2011). [CrossRef] [PubMed]
  4. S. J. Woltman, G. D. Jay, and G. P. Crawford, “Liquid-crystal materials find a new order in biomedical applications,” Nat. Mater. 6(12), 929–938 (2007). [CrossRef] [PubMed]
  5. S. Sircar and Q. Wang, “Dynamics and rheology of biaxial liquid crystal polymers in shear flows,” J. Rheol. (N.Y.N.Y.) 53(4), 819–858 (2009). [CrossRef]
  6. D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, eds., Handbook of Liquid Crystals (Wiley-VCH, 1998), Vol. 2A.
  7. T. Thiele, J.-F. Berret, S. Müller, and C. Schmidt, “Rheology and nuclear magnetic resonance measurements under shear of sodium dodecyl sulfate/decanol/water,” J. Rheol. (N.Y.N.Y.) 45(1), 29–48 (2001). [CrossRef]
  8. J. Sato and V. Breedveld, “Transient rheology of solvent-responsive complex fluids by integrating microrheology and microfluidics,” J. Rheol. (N.Y.N.Y.) 50(1), 1–19 (2006). [CrossRef]
  9. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical microrheology using rotating laser-trapped particles,” Phys. Rev. Lett. 92(19), 198104 (2004). [CrossRef] [PubMed]
  10. F. C. MacKintosh and C. F. Schmidt, “Microrheology,” Curr. Opin. Colloid Interface Sci. 4(4), 300–307 (1999). [CrossRef]
  11. G. Liao, I. I. Smalyukh, J. R. Kelly, O. D. Lavrentovich, and A. Jákli, “Electrorotation of colloidal particles in liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(3), 031704 (2005). [CrossRef] [PubMed]
  12. J. C. Loudet, P. Hanusse, and P. Poulin, “Stokes drag on a sphere in a nematic liquid crystal,” Science 306(5701), 1525 (2004). [CrossRef] [PubMed]
  13. H. F. Gleeson, T. A. Wood, and M. Dickinson, “Laser manipulation in liquid crystals: an approach to microfluidics and micromachines,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364(1847), 2789–2805 (2006). [CrossRef] [PubMed]
  14. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394(6691), 348–350 (1998). [CrossRef]
  15. S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Highly birefringent vaterite microspheres: production, characterization and applications for optical micromanipulation,” Opt. Express 17(24), 21944–21955 (2009). [CrossRef] [PubMed]
  16. L. J. Yu and A. Saupe, “Liquid crystalline phases of the sodium decylsulfate/decanol/water system. Nematic-nematic and cholesteric-cholesteric phase transitions,” J. Am. Chem. Soc. 102(15), 4879–4883 (1980). [CrossRef]
  17. A. M. Figueiredo Neto and S. R. A. Salinas, The Physics of Lyotropic Liquid Crystals (Oxford University Press, 2005).
  18. Q. Liu, C. Beier, J. Evans, T. Lee, S. He, and I. I. Smalyukh, “Self-alignment of dye molecules in micelles and lamellae for three-dimensional imaging of lyotropic liquid crystals,” Langmuir 27(12), 7446–7452 (2011). [CrossRef] [PubMed]
  19. I. I. Smalyukh, S. Shiyanovskii, and O. D. Lavrentovich, “Three-dimensional imaging of orientational order by fluorescence confocal polarizing microscopy,” Chem. Phys. Lett. 336(1-2), 88–96 (2001). [CrossRef]
  20. R. Bartolino, T. Chiaranza, M. Meuti, and R. Compagnoni, “Uniaxial and biaxial lyotropic nematic liquid crystals,” Phys. Rev. A 26(2), 1116–1119 (1982). [CrossRef]
  21. S. Dominguez Bella and J. M. Garcia-Ruiz, “Textures in induced morphology crystal aggregates of CaCO3: sheaf of wheat morphologies,” J. Cryst. Growth 79(1-3), 236–240 (1986). [CrossRef]
  22. R. Vogel, M. Persson, C. Feng, S. J. Parkin, T. A. Nieminen, B. Wood, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Synthesis and surface modification of birefringent vaterite microspheres,” Langmuir 25(19), 11672–11679 (2009). [CrossRef] [PubMed]
  23. V. L. Y. Loke, T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “FDFD/T-matrix hybrid method,” J. Quant. Spectrosc. Radiat. Transf. 106(1-3), 274–284 (2007). [CrossRef]
  24. T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical measurement of microscopic torques,” J. Mod. Opt. 48, 405–413 (2001).
  25. T. Lee, R. P. Trivedi, and I. I. Smalyukh, “Multimodal nonlinear optical polarizing microscopy of long-range molecular order in liquid crystals,” Opt. Lett. 35(20), 3447–3449 (2010). [CrossRef] [PubMed]
  26. R. P. Trivedi, T. Lee, K. A. Bertness, and I. I. Smalyukh, “Three dimensional optical manipulation and structural imaging of soft materials by use of laser tweezers and multimodal nonlinear microscopy,” Opt. Express 18(26), 27658–27669 (2010). [CrossRef] [PubMed]
  27. M. Kuzman, Y. W. Hui, and M. M. Labes, “Capillary viscometry of some lyotropic nematics,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 172, 211–215 (1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited