OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 2 — Feb. 1, 2012

Whispering gallery modes in a glass microsphere as a function of temperature

L. L. Martín, C. Pérez-Rodríguez, P. Haro-González, and I. R. Martín  »View Author Affiliations


Optics Express, Vol. 19, Issue 25, pp. 25792-25798 (2011)
http://dx.doi.org/10.1364/OE.19.025792


View Full Text Article

Enhanced HTML    Acrobat PDF (751 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Microspheres of Nd3+ doped barium titano silicate glass were prepared and the whispering gallery mode resonances were observed in a modified confocal microscope. A bulk sample of the same glass was calibrated as temperature sensor by the fluorescence intensity ratio technique. After that, the microsphere was heated by laser irradiation process technique in the microscope and the surface temperature was estimated using the fluorescence intensity ratio. This temperature is correlated with the displacement of the whispering gallery mode peaks, showing an average red-shift of 10 pm/K in a wide range of surface temperatures varying from 300 K to 950K. The limit of resolution in temperature was estimated for the fluorescence intensity ratio and the whispering gallery mode displacement, showing an improvement of an order of magnitude for the second method.

© 2011 OSA

OCIS Codes
(230.5750) Optical devices : Resonators
(280.6780) Remote sensing and sensors : Temperature
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Sensors

History
Original Manuscript: July 21, 2011
Revised Manuscript: October 13, 2011
Manuscript Accepted: October 21, 2011
Published: December 2, 2011

Virtual Issues
Vol. 7, Iss. 2 Virtual Journal for Biomedical Optics

Citation
L. L. Martín, C. Pérez-Rodríguez, P. Haro-González, and I. R. Martín, "Whispering gallery modes in a glass microsphere as a function of temperature," Opt. Express 19, 25792-25798 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-25-25792


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B88(2), 297–303 (2007). [CrossRef]
  2. H. Kusama, O. J. Sovers, and T. Yoshioka, “Line Shift method for phosphor temperature measurements,” Jpn. J. Appl. Phys.15(12), 2349–2358 (1976). [CrossRef]
  3. O. Svelto, Principles of Lasers, 3rd ed. (Plenum, 1989), pp. 70–71.
  4. H. Berthou and C. K. Jörgensen, “Optical-fiber temperature sensor based on upconversion-excited fluorescence,” Opt. Lett.15(19), 1100–1102 (1990). [CrossRef] [PubMed]
  5. W. J. Miniscalco, in Rare Earth Doped Fiber Lasers and Amplifiers, M. J. F. Digonnet, ed. (Marcel Dekker, 1993), p. 35.
  6. E. Maurice, G. Monnom, B. Dussardier, A. Saïssy, D. B. Ostrowsky, and G. W. Baxter, “Thermalization effects between upper levels of green fluorescence in Er-doped silica fibers,” Opt. Lett.19(13), 990–992 (1994). [CrossRef] [PubMed]
  7. P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett.73(5), 578–581 (1998). [CrossRef]
  8. S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation,” J. Appl. Phys.84(9), 4649–4655 (1998). [CrossRef]
  9. S. A. Wade, Ph.D. thesis (Victoria University, Melbourne, Australia, 1999).
  10. S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys.94(8), 4743–4756 (2003). [CrossRef]
  11. M. A. R. C. Alencar, G. S. Maciel, C. B. de Araujo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett.84(23), 4753–4756 (2004). [CrossRef]
  12. A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Review of Applications of Whispering-Gallery Mode Resonators in Photonics and Nonlinear Optics,” IPN Progress Report 42-162 (2005), pp. 1–51.
  13. G. Schweiger and M. Horn, “Effect of changes in size and index of refraction on the resonance wavelength of microspheres,” J. Opt. Soc. Am. B23(2), 212–217 (2006). [CrossRef]
  14. Q. Ma, T. Rossmann, and Z. Guo, “Temperature sensitivity of silica micro-resonators,” J. Phys. D Appl. Phys.41(24), 245111 (2008). [CrossRef]
  15. G. Adamovsky and M. V. Otugen, “Morphology-dependent resonances and their applications to sensing in aerospace environments,” J. Aerosp. Comp. Inf. Commun.5(10), 409–424 (2009).
  16. T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express12(20), 4742–4750 (2004). [CrossRef] [PubMed]
  17. Q. Ma, T. Rossmann, and Z. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol.21(2), 025310–025317 (2010). [CrossRef]
  18. N. Maruyama, T. Honma, and T. Komatsu, “Enhanced quantum yield of yellow photoluminescence of Dy3+ ions in nonlinear optical Ba2TiSi2O8 nanocrystals formed in glass,” J. Solid State Chem.182(2), 246–252 (2009). [CrossRef]
  19. L. L. Martin, P. Haro-González, and I. R. Martín, “Optical properties of transparent Dy3+ doped Ba2TiSi2O8 glass ceramic,” Opt. Mater.33(5), 738–741 (2011). [CrossRef]
  20. P. Haro-González, I. R. Martín, L. L. Martín, S. F. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater.33(5), 742–745 (2011). [CrossRef]
  21. V. Lefèvre-Seguin, “Whispering-gallery mode lasers with doped silica microspheres,” Opt. Mater.11(2-3), 153–165 (1999). [CrossRef]
  22. G. R. Elliott, D. W. Hewak, G. S. Murugan, and J. S. Wilkinson, “Chalcogenide glass microspheres; their production, characterization and potential,” Opt. Express15(26), 17542–17553 (2007). [CrossRef] [PubMed]
  23. L. L. Martín, P. Haro-González, I. R. Martín, D. Navarro-Urrios, D. Alonso, C. Pérez-Rodríguez, D. Jaque, and N. E. Capuj, “Whispering-gallery modes in glass microspheres: optimization of pumping in a modified confocal microscope,” Opt. Lett.36(5), 615–617 (2011). [CrossRef] [PubMed]
  24. M. M. Mann and L. G. DeShazer, “Energy levels and spectral broadening of neodymium ions in laser glass,” J. Appl. Phys.41(7), 2951–2957 (1970). [CrossRef]
  25. A. A. Kaminskii, Laser Crystals: Their Physics and Applications (Springer, 1981), pp. 121–147.
  26. P. W. France, in Fluoride Glass Optical Fibers, P. W. France, ed. (Blackie, 1990), pp. 165–167.
  27. C. V. I. Melles Griot, “Technical Guide: Material Properties” (2009), Vol. 4.9, Iss. 9.
  28. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods5(7), 591–596 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited