OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 2 — Feb. 1, 2012

Reduction of two-photon holographic speckle using shift-averaging

Suhail Matar, Lior Golan, and Shy Shoham  »View Author Affiliations

Optics Express, Vol. 19, Issue 27, pp. 25891-25899 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1027 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Holographic speckle is a major impediment for the emerging applications of multiphoton holographic projection in biomedical imaging, photo-stimulation and micromachining. Time averaging of multiple shifted versions of a single hologram (“shift-averaging”) is a computationally-efficient method that was recently shown to deterministically eliminate holographic speckle in single-photon applications. Here, we extend these results and show, computationally and experimentally, that in two-photon holographic excitation shift-averaging also reduces holographic speckle better than “random” averaging of multiple calculated holograms.

© 2011 OSA

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(090.2870) Holography : Holographic display
(190.4180) Nonlinear optics : Multiphoton processes
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:

Original Manuscript: September 22, 2011
Revised Manuscript: November 9, 2011
Manuscript Accepted: November 11, 2011
Published: December 5, 2011

Virtual Issues
Vol. 7, Iss. 2 Virtual Journal for Biomedical Optics

Suhail Matar, Lior Golan, and Shy Shoham, "Reduction of two-photon holographic speckle using shift-averaging," Opt. Express 19, 25891-25899 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. J. Jenness, K. D. Wulff, M. S. Johannes, M. J. Padgett, D. G. Cole, and R. L. Clark, “Three-dimensional parallel holographic micropatterning using a spatial light modulator,” Opt. Express 16(20), 15942–15948 (2008). [CrossRef] [PubMed]
  2. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810–1816 (2001). [CrossRef]
  3. C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, “Holographic photolysis of caged neurotransmitters,” Nat. Methods 5(9), 821–827 (2008). [CrossRef] [PubMed]
  4. L. Golan, I. Reutsky, N. Farah, and S. Shoham, “Design and characteristics of holographic neural photo-stimulation systems,” J. Neural Eng. 6(6), 066004 (2009). [CrossRef] [PubMed]
  5. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Jena) 35, 237–246 (1972).
  6. T. S. McKechnie, “Speckle Reduction,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1975).
  7. E. Papagiakoumou, V. de Sars, D. Oron, and V. Emiliani, “Patterned two-photon illumination by spatiotemporal shaping of ultrashort pulses,” Opt. Express 16(26), 22039–22047 (2008). [CrossRef] [PubMed]
  8. J. Amako, H. Miura, and T. Sonehara, “Speckle-noise reduction on kinoform reconstruction using a phase-only spatial light modulator,” Appl. Opt. 34(17), 3165–3171 (1995). [CrossRef] [PubMed]
  9. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66(11), 1145–1150 (1976). [CrossRef]
  10. L. Golan and S. Shoham, “Speckle elimination using shift-averaging in high-rate holographic projection,” Opt. Express 17(3), 1330–1339 (2009). [CrossRef] [PubMed]
  11. Y. Pan, X. Xu, S. Solanki, X. Liang, R. B. A. Tanjung, C. Tan, and T.-C. Chong, “Fast CGH computation using S-LUT on GPU,” Opt. Express 17(21), 18543–18555 (2009). [CrossRef] [PubMed]
  12. J. P. Parry, R. J. Beck, J. D. Shephard, and D. P. Hand, “Application of a liquid crystal spatial light modulator to laser marking,” Appl. Opt. 50(12), 1779–1785 (2011). [CrossRef] [PubMed]
  13. V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation using spatial light modulators,” Front. Neural Circuits 2, 5 (2008). [CrossRef] [PubMed]
  14. V. R. Daria, C. Stricker, R. Bowman, S. Redman, and H. A. Bachor, “Arbitrary multisite two-photon excitation in four dimensions,” Appl. Phys. Lett. 95(9), 093701 (2009). [CrossRef]
  15. G. Bautista, M. J. Romero, G. Tapang, and V. R. Daria, “Parallel two-photon photopolymerization of microgear patterns,” Opt. Commun. 282(18), 3746–3750 (2009). [CrossRef]
  16. E. Papagiakoumou, F. Anselmi, A. Bègue, V. de Sars, J. Glückstad, E. Y. Isacoff, and V. Emiliani, “Scanless two-photon excitation of channelrhodopsin-2,” Nat. Methods 7(10), 848–854 (2010). [CrossRef] [PubMed]
  17. S. Shoham, “Optogenetics meets optical wavefront shaping,” Nat. Methods 7(10), 798–799 (2010). [CrossRef] [PubMed]
  18. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005).
  19. J. Chen, S. M. Morris, T. D. Wilkinson, J. P. Freeman, and H. J. Coles, “High speed liquid crystal over silicon display based on the flexoelectro-optic effect,” Opt. Express 17(9), 7130–7137 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited