OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 2 — Feb. 1, 2012

Optical resonance transmission properties of nano-hole arrays in a gold film: effect of adhesion layer

Mohamadreza Najiminaini, Fartash Vasefi, Bozena Kaminska, and Jeffrey J.L. Carson  »View Author Affiliations


Optics Express, Vol. 19, Issue 27, pp. 26186-26197 (2011)
http://dx.doi.org/10.1364/OE.19.026186


View Full Text Article

Enhanced HTML    Acrobat PDF (1285 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we present a systematic study on the influence of composition of the adhesion layer between gold and a Pyrex substrate on the optical resonance transmission properties of nano-hole arrays in an optically thick gold film. Large nano-hole arrays with different hole periodicities in a square lattice arrangement were fabricated using Electron Beam Lithography using different adhesion layers (chromium, titanium, or etched adhesion layer). The fabricated nano-hole arrays were optically characterized using transmission spectroscopy. The optical performance of each nano-hole array was numerically simulated using a Finite Difference Time Domain (FDTD) method. The experiments and simulations revealed that the optical resonance transmission properties (i.e. the resonance wavelength, the spectral transmission modulation ratio, and the resonance bandwidth) of the nano-hole arrays depended highly on the composition and the thickness of the adhesion layer. The optical resonance bandwidths were larger for the nano-hole arrays with chromium or titanium adhesion layers. Also, a red-shift of the optical resonance peak was observed for nano-hole arrays with a metal adhesion layer compared to the corresponding nano-hole arrays with an etched adhesion layer, but the red-shift was greatest for the nano-hole array with the titanium adhesion layer. For adhesion layers of greater thickness, the optical resonance peaks were reduced in magnitude. Finally, nano-hole arrays with an etched adhesion layer had a significant blue-shift in the optical resonance peak and a narrower optical resonance bandwidth compared to nano-hole arrays with a titanium or a chromium adhesion layer. Consequently, a narrow optical resonance bandwidth characteristic of a nano-hole array with an etched adhesion layer can potentially enhance the spectral selectivity and offer improved optical performance.

© 2011 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(220.4241) Optical design and fabrication : Nanostructure fabrication
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: February 11, 2011
Revised Manuscript: March 14, 2011
Manuscript Accepted: March 16, 2011
Published: December 8, 2011

Virtual Issues
Vol. 7, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Mohamadreza Najiminaini, Fartash Vasefi, Bozena Kaminska, and Jeffrey J.L. Carson, "Optical resonance transmission properties of nano-hole arrays in a gold film: effect of adhesion layer," Opt. Express 19, 26186-26197 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-27-26186


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  2. T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B16(10), 1743–1748 (1999). [CrossRef]
  3. R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: physics and applications,” Laser Photon. Rev.4(2), 311–335 (2010). [CrossRef]
  4. A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, “Enhanced fluorescence from arrays of Nanoholes in a gold film,” J. Am. Chem. Soc.127(42), 14936–14941 (2005). [CrossRef] [PubMed]
  5. J. R. Lakowicz, M. H. Chowdhury, K. Ray, J. Zhang, Y. Fu, R. Badugu, C. R. Sabanayagam, K. Nowaczyk, H. Szmacinski, K. Aslan, and C. D. Geddes, “Plasmon-controlled fluorescence: A new detection technology,” Proc SPIE 6099, 9–1-9–14 (2009).
  6. A. Lesuffleur, H. Im, N. C. Lindquist, K. S. Lim, and S. H. Oh, “Laser-illuminated nanohole arrays for multiplex plasmonic microarray sensing,” Opt. Express16(1), 219–224 (2008). [CrossRef] [PubMed]
  7. F. M. Huang, Y. Chen, F. J. Garcia de Abajo, and N. I. Zheludev, “Focusing of light by a Nanohole array,” Appl. Phys. Lett.90(9), 091119 (2007). [CrossRef]
  8. S. G. Rodrigo, F. J. García-Vidal, and L. Martín-Moreno, “Influence of material properties on extraordinary optical transmission through hole arrays,” Phys. Rev. Lett. B77, 075401 (2008).
  9. F. Przybilla, A. Degiron, J. Y. Laluet, C. Genet, and T. W. Ebbesen, “Optical transmission in perforated noble and transition metal films,” J. Opt. A, Pure Appl. Opt.8(5), 458–463 (2006). [CrossRef]
  10. A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun.200(1-6), 1–7 (2001). [CrossRef]
  11. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004). [CrossRef] [PubMed]
  12. M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Experimental and numerical analysis on the optical resonance transmission properties of nano-hole arrays,” Opt. Express18(21), 22255–22270 (2010). [CrossRef] [PubMed]
  13. K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett.85(19), 4316–4318 (2004). [CrossRef]
  14. X. Chen, M. Pan, and K. Jiang, “Sensitivity enhancement of SPR biosensor by improving surface quality of glass slides,” Microelectron. Engin.87(5–8), 790–792 (2009).
  15. B. Lahiri, R. Dylewicz, R. M. De La Rue, and N. P. Johnson, “Impact of titanium adhesion layers on the response of arrays of metallic split-ring resonators (SRRs),” Opt. Express18(11), 11202–11208 (2010). [CrossRef] [PubMed]
  16. H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial Role of the Adhesion Layer on the Plasmonic Fluorescence Enhancement,” ACS Nano3(7), 2043–2048 (2009). [CrossRef] [PubMed]
  17. X. Jiao, J. Goeckeritz, S. Blair, and M. Oldham, “Localization of Near-Field Resonances in Bowtie Antennae: Influence of Adhesion Layers,” Plasmonics4(1), 37–50 (2009). [CrossRef]
  18. N. Djaker, R. Hostein, E. Devaux, T. W. Ebbesen, H. Rigneault, and J. Wenger, “Surface Enhanced Raman Scattering on a Single Nanometric Aperture,” J. Phys. Chem. C114(39), 16250–16256 (2010). [CrossRef]
  19. B. A. Sexton, B. N. Feltis, and T. J. Davis, “Characterisation of gold surface plasmon resonance sensor substrates,” Sens. Actuators A Phys.141(2Issue 2), 471–475 (2008). [CrossRef]
  20. J. Pan, R. M. Pafchek, F. F. Judd, and J. B. Baxter, “Effect of Chromium–Gold and Titanium–Titanium Nitride–Platinum–Gold Metallization on Wire/Ribbon Bondability,” IEEE Trans. Adv. Packag.29(4), 707–713 (2006). [CrossRef]
  21. B. C. Galarreta, P. R. Norton, and F. Lagugn-Labarthet, “SERS detection of Streptavidin/Biotin Monolayer assemblies,” Langmuir27(4), 1494–1498 (2011). [CrossRef] [PubMed]
  22. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag.14(3), 302–307 (1966). [CrossRef]
  23. A. Taflove, and S. C. Hagness, Computational electrodynamics: The Finite-Difference Time-Domain method 2nd Ed (Artech House Publishers, Boston 2000).
  24. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985).
  25. A. A. Tseng, “Recent developments in nanofabrication using focused ion beams,” Small1(10), 924–939 (2005). [CrossRef] [PubMed]
  26. J. G. Kim, Y. Sim, Y. Cho, J. W. Seo, S. Kwon, J. W. Park, H. G. Choi, H. Kim, and S. Lee, “Large area pattern replication by nanoimprint lithography for LCD–TFT application,” Microelectron. Eng.86(12), 2427–2431 (2009). [CrossRef]
  27. J. Chen, J. Shi, D. Decanini, E. Cambril, Y. Chen, and A. Haghiri-Gosnet, “Gold nanohole arrays for biochemical sensing fabricated by soft UV nanoimprint lithography,” Microelectron. Eng.86(4-6), 632–635 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited