OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 2 — Feb. 1, 2012

Phase sensitive sensor on plasmonic nanograting structures.

M. Maisonneuve, O. d’Allivy Kelly, A-P. Blanchard-Dionne, S. Patskovsky, and M. Meunier  »View Author Affiliations

Optics Express, Vol. 19, Issue 27, pp. 26318-26324 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (929 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, a concept of phase sensitive sensor based on plasmonic nanograting structures with normal incidence and transmission detection is presented. Performed theoretical modeling enables fabrication of nanostructures with optimal geometry for polarimetric measurements of the phase difference between s- and p- polarized light. High phase resolution of the optical setup (6*10−3 deg.) allows detection of the bulk refractive index with sensitivity equal to 3.8*10−6 RIU. Proposed technique presents a more efficient alternative to the conventional spectral interrogation method of nanoplasmonic-based sensing and could be used for multisensing or imaging applications.

© 2011 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:

Original Manuscript: July 7, 2011
Revised Manuscript: September 15, 2011
Manuscript Accepted: October 6, 2011
Published: December 9, 2011

Virtual Issues
Vol. 7, Iss. 2 Virtual Journal for Biomedical Optics

M. Maisonneuve, O. d’Allivy Kelly, A-P. Blanchard-Dionne, S. Patskovsky, and M. Meunier, "Phase sensitive sensor on plasmonic nanograting structures.," Opt. Express 19, 26318-26324 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. J. Garcia-Vidal, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010). [CrossRef]
  2. L. Guyot, A. P. Blanchard-Dionne, S. Patskovsky, and M. Meunier, “Integrated silicon-based nanoplasmonic sensor,” Opt. Express 19(10), 9962–9967 (2011). [CrossRef] [PubMed]
  3. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007). [CrossRef] [PubMed]
  4. M. Vala, K. Chadt, M. Piliarik, and J. Homola, “High-performance compact SPR sensor for multi-analyte sensing,” Sens. Actuators B Chem. 148(2), 544–549 (2010). [CrossRef]
  5. S. Patskovsky, M. Meunier, P. N. Prasad, and A. V. Kabashin, “Self-noise-filtering phase-sensitive surface plasmon resonance biosensing,” Opt. Express 18(14), 14353–14358 (2010). [CrossRef] [PubMed]
  6. W.-C. Law, P. Markowicz, K.-T. Yong, I. Roy, A. Baev, S. Patskovsky, A. V. Kabashin, H.-P. Ho, and P. N. Prasad, “Wide dynamic range phase-sensitive surface plasmon resonance biosensor based on measuring the modulation harmonics,” Biosens. Bioelectron. 23(5), 627–632 (2007). [CrossRef] [PubMed]
  7. P. S. Vukusic, G. P. Bryan-Brown, and J. R. Sambles, “Surface plasmon resonance on gratings as a novel means for gas sensing,” Sens. Actuators B Chem. 8(2), 155–160 (1992). [CrossRef]
  8. M. R. Gadsdon, I. R. Hooper, and J. R. Sambles, “Optical resonances on sub-wavelength silver lamellar gratings,” Opt. Express 16(26), 22003–22028 (2008). [CrossRef] [PubMed]
  9. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981). [CrossRef]
  10. D. L. Mills, “Attenuation of surface polaritons by surface roughness,” Phys. Rev. B 12(10), 4036–4046 (1975). [CrossRef]
  11. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001). [CrossRef] [PubMed]
  12. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Berlin, 1988).
  13. F. Abeles, “Surface electromagnetic waves ellipsometry,” Surf. Sci. 56, 237–251 (1976). [CrossRef]
  14. K. Knop, “Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves,” J. Opt. Soc. Am. 68(9), 1206–1210 (1978). [CrossRef]
  15. I. Pockrand, “Resonance anomalies in the light intensity reflected at silver gratings with dielectric coatings,” J. Phys. D Appl. Phys. 9(17), 2423–2432 (1976). [CrossRef]
  16. G. D’Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. A. Vincenti, and A. Alù, “Transmission resonances in plasmonic metallic gratings,” J. Opt. Soc. Am. B 28(2), 253–264 (2011). [CrossRef]
  17. F. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007). [CrossRef]
  18. E. R. Peckt and B. N. Khanna, “Dispersion of nitrogen,” J. Opt. Soc. Am. 56, 1059–1063 (1966).
  19. A. Michels and A. Botzen, “Refractive index and Lorentz-Lorenz function of argon up to 2300 atmospheres at 25°C,” Physica 15(8-9), 769–773 (1949). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited