OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 2 — Feb. 1, 2012

Adaptive optics for fluorescence correlation spectroscopy

Charles-Edouard Leroux, Irène Wang, Jacques Derouard, and Antoine Delon  »View Author Affiliations


Optics Express, Vol. 19, Issue 27, pp. 26839-26849 (2011)
http://dx.doi.org/10.1364/OE.19.026839


View Full Text Article

Enhanced HTML    Acrobat PDF (1074 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fluorescence Correlation Spectroscopy (FCS) yields measurement parameters (number of molecules, diffusion time) that characterize the concentration and kinetics of fluorescent molecules within a supposedly known observation volume. Absolute derivation of concentrations and diffusion constants therefore requires preliminary calibrations of the confocal Point Spread Function with phantom solutions under perfectly controlled environmental conditions. In this paper, we quantify the influence of optical aberrations on single photon FCS and demonstrate a simple Adaptive Optics system for aberration correction. Optical aberrations are gradually introduced by focussing the excitation laser beam at increasing depths in fluorescent solutions with various refractive indices, which leads to drastic depth-dependent bias in the estimated FCS parameters. Aberration correction with a Deformable Mirror stabilizes these parameters within a range of several tens of μm into the solution. We also demonstrate, both theoretically and experimentally, that the molecular brightness scales as the Strehl ratio squared.

© 2011 OSA

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(180.1790) Microscopy : Confocal microscopy

ToC Category:
Adaptive Optics

History
Original Manuscript: October 11, 2011
Revised Manuscript: November 25, 2011
Manuscript Accepted: December 2, 2011
Published: December 15, 2011

Virtual Issues
Vol. 7, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Charles-Edouard Leroux, Irène Wang, Jacques Derouard, and Antoine Delon, "Adaptive optics for fluorescence correlation spectroscopy," Opt. Express 19, 26839-26849 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-27-26839


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Digman and E. Gratton, “Lessons in fluctuation correlation spectroscopy,” Annu. Rev. Phys. Chem. 62, 645–668 (2011). [CrossRef] [PubMed]
  2. E. Haustein and P. Schwille, “Fluorescence correlation spectroscopy: novel variations of an established technique,” Annu. Rev. Biophys. Biomol. Struct. 36, 151–169 (2007). [CrossRef] [PubMed]
  3. E. L. Elson, “Quick tour of fluorescence correlation spectroscopy,” J. Biomed. Opt. 9, 857–864 (2004). [CrossRef] [PubMed]
  4. S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys J. 83, 2300–2317 (2002). [CrossRef] [PubMed]
  5. J. D. Müller, “Cumulant analysis in fluorescence fluctuation spectroscopy,” Biophys. J. 86, 3981–3992 (2004). [CrossRef] [PubMed]
  6. B. Huang, T. D. Perroud, and R. N. Zare, “Photon counting histogram: one-photon excitation,” ChemPhysChem5, 1523–1531 (2004). [CrossRef] [PubMed]
  7. S. Rüttinger, V. Buschmann, B. Krämer, R. Erdmann, R. Macdonald, and F. Koberling, “Comparison and accuracy of methods to determine the confocal volume for quantitative fluorescence correlation spectroscopy,” J. Microsc. 232, 343–352 (2008). [CrossRef] [PubMed]
  8. T. Dertinger, A. Loman, B. Ewers, C. Müller, B. Krämer, and J. Enderlein, “The optics and performance of dual-focus fluorescence correlation spectroscopy,” Opt. Express16, 14353–14368 (2008). [CrossRef] [PubMed]
  9. C. B. Müller, T. Eckert, A. Loman, J. Enderlein, and W. Richtering, “Dual-focus fluorescence correlation spectroscopy: a robust tool for studying molecular crowding,” Soft Matter5, 1358–1366 (2009). [CrossRef]
  10. N. Dross, C. Spriet, M. Zwerger, G. Müller, W. Waldeck, and J. Langowski, “Mapping eGFP oligomer mobility in living cell nuclei,” PLoS ONE4, e5041 1–13 (2009). [CrossRef]
  11. P. Ferrand, M. Pianta, A. Kress, A. Aillaud, and H. Rigneault, “A versatile dual spot laser scanning confocal microscopy system for advanced fuorescence correlation spectroscopy analysis in living cell,” Rev. Sci. Instrum. 80, 083702 (2009). [CrossRef] [PubMed]
  12. J. Widengren, U. Mets, and R. Rigler, “Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study,” J. Phys. Chem. 99, 13368–13379 (1995). [CrossRef]
  13. J. Mertz, “Molecular photodynamics involved in multi-photon excitation fluorescence microscopy,” Eur. Phys. J. D3, 53–66 (1998). [CrossRef]
  14. M. Schwertner, M. Booth, and T. Wilson, “Characterizing specimen induced aberrations for high NA adaptive optical microscopy,” Opt. Express12, 6540–6552 (2004). [CrossRef] [PubMed]
  15. M. Booth, A. Kubasik-Thayil, A. Jesacher, D. Débarre, K. Grieve, and T. Wilson, “Adaptive optics in biomedical microscopy,” in Novel Techniques in Microscopy, OSA Technical Digest (CD) (Optical Society of America, 2009), paper NWA1.
  16. O. Azucena, J. Crest, J. Cao, W. Sullivan, P. Kner, D. Gavel, D. Dillon, S. Olivier, and J. Kubby, “Wavefront aberration measurements and corrections through thick tissue using fluorescent microsphere reference beacons,” Opt. Express18, 17521–17532 (2010). [CrossRef] [PubMed]
  17. O. Azucena, J. Crest, S. Kotadia, W. Sullivan, X. Tao, M. Reinig, D. Gavel, S. Olivier, and J. Kubby, “Adaptive optics wide-field microscopy using direct wavefront sensing,” Opt. Lett. 36, 825–827 (2011). [CrossRef] [PubMed]
  18. X. Tao, B. Fernandez, O. Azucena, M. Fu, D. Garcia, Y. Zuo, D. Chen, and J. Kubby, “Adaptive optics confocal microscopy using direct wavefront sensing,” Opt. Lett. 36, 1062–1064 (2011). [CrossRef] [PubMed]
  19. X. Tao, O. Azucena, M. Fu, Y. Zuo, D. Chen, and J. Kubby, “Adaptive optics microscopy with direct wavefront sensing using fluorescent protein guide stars,” Opt. Lett. 36, 3389–3391 (2011). [CrossRef] [PubMed]
  20. M. Neil, M. Booth, and T. Wilson, “Closed-loop aberration correction by use of a modal Zernike wave-front sensor,” Opt. Lett. 25, 1083–1085 (2000). [CrossRef]
  21. M. Booth, M. Neil, and T. Wilson, “New modal wave-front sensor: application to adaptive confocal fluorescence microscopy and two-photon excitation fluorescence microscopy,” J. Opt. Soc. Am. A19, 2112–2120 (2002). [CrossRef]
  22. N. E. Dorsey, Properties of Ordinary Water-Substance in All Its Phases (New York, Reinhold Pub. Corp., 1940), p. 184.
  23. D. R. Lide, ed., Handbook of Chemistry and Physics (CRC Press, Cleveland, 2006).
  24. P. Kapusta, “Absolute diffusion coefficients: compilation of reference data for FCS calibration,” http://www.picoquant.com/technotes/appnote_diffusion_coefficients.pdf .
  25. M. Booth, M. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192, 90–98 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited