OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 2 — Feb. 17, 2011

Design and application of a confocal microscope for spectrally resolved anisotropy imaging

Alessandro Esposito, Arjen N. Bader, Simon C. Schlachter, Dave J. van den Heuvel, Gabriele S. Kaminski Schierle, Ashok R. Venkitaraman, Clemens F. Kaminski, and Hans C. Gerritsen  »View Author Affiliations


Optics Express, Vol. 19, Issue 3, pp. 2546-2555 (2011)
http://dx.doi.org/10.1364/OE.19.002546


View Full Text Article

Enhanced HTML    Acrobat PDF (1360 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Biophysical imaging tools exploit several properties of fluorescence to map cellular biochemistry. However, the engineering of a cost-effective and user-friendly detection system for sensing the diverse properties of fluorescence is a difficult challenge. Here, we present a novel architecture for a spectrograph that permits integrated characterization of excitation, emission and fluorescence anisotropy spectra in a quantitative and efficient manner. This sensing platform achieves excellent versatility of use at comparatively low costs. We demonstrate the novel optical design with example images of plant cells and of mammalian cells expressing fluorescent proteins undergoing energy transfer.

© 2011 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.1790) Microscopy : Confocal microscopy
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Microscopy

History
Original Manuscript: November 16, 2010
Revised Manuscript: January 17, 2011
Manuscript Accepted: January 23, 2011
Published: January 26, 2011

Virtual Issues
Vol. 6, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Alessandro Esposito, Arjen N. Bader, Simon C. Schlachter, Dave J. van den Heuvel, Gabriele S. Kaminski Schierle, Ashok R. Venkitaraman, Clemens F. Kaminski, and Hans C. Gerritsen, "Design and application of a confocal microscope for spectrally resolved anisotropy imaging," Opt. Express 19, 2546-2555 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-3-2546


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Neher, M. Mitkovski, F. Kirchhoff, E. Neher, F. J. Theis, and A. Zeug, “Blind source separation techniques for the decomposition of multiply labeled fluorescence images,” Biophys. J. 96(9), 3791–3800 (2009). [CrossRef] [PubMed]
  2. J. A. Palero, H. S. de Bruijn, A. van der Ploeg-van den Heuvel, H. J. C. M. Sterenborg, and H. C. Gerritsen, “In vivo nonlinear spectral imaging in mouse skin,” Opt. Express 14(10), 4395–4402 (2006). [CrossRef] [PubMed]
  3. P. L. T. M. Frederix, M. A. H. Asselbergs, W. G. J. H. van Sark, D. J. van den Heuvel, W. Hamelink, E. L. de Beer, and H. C. Gerritsen, “High sensitivity spectrograph for use in fluorescence microscopy,” Appl. Spectrosc. 55(8), 1005–1012 (2001). [CrossRef]
  4. T. S. Forde and Q. S. Hanley, “Spectrally resolved frequency domain analysis of multi-fluorophore systems undergoing energy transfer,” Appl. Spectrosc. 60(12), 1442–1452 (2006). [CrossRef]
  5. A. Esposito, M. Gralle, M. A. C. Dani, D. Lange, and F. S. Wouters, “pHlameleons: a family of FRET-based protein sensors for quantitative pH imaging,” Biochemistry 47(49), 13115–13126 (2008). [CrossRef] [PubMed]
  6. A. Esposito, T. Tiffert, J. M. Mauritz, S. Schlachter, L. H. Bannister, C. F. Kaminski, and V. L. Lew, “FRET imaging of hemoglobin concentration in Plasmodium falciparum-infected red cells,” PLoS ONE 3(11), e3780 (2008). [CrossRef] [PubMed]
  7. A. N. Bader, E. G. Hofman, P. M. van Bergen En Henegouwen, and H. C. Gerritsen, “Imaging of protein cluster sizes by means of confocal time-gated fluorescence anisotropy microscopy,” Opt. Express 15(11), 6934–6945 (2007). [CrossRef] [PubMed]
  8. G. J. Kremers, E. B. van Munster, J. Goedhart, and T. W. Gadella., “Quantitative lifetime unmixing of multiexponentially decaying fluorophores using single-frequency fluorescence lifetime imaging microscopy,” Biophys. J. 95(1), 378–389 (2008). [CrossRef] [PubMed]
  9. S. Schlachter, S. Schwedler, A. Esposito, G. S. Kaminski Schierle, G. D. Moggridge, and C. F. Kaminski, “A method to unmix multiple fluorophores in microscopy images with minimal a priori information,” Opt. Express 17(25), 22747–22760 (2009). [CrossRef]
  10. D. S. Lidke, P. Nagy, B. G. Barisas, R. Heintzmann, J. N. Post, K. A. Lidke, A. H. Clayton, D. J. Arndt-Jovin, and T. M. Jovin, “Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET),” Biochem. Soc. Trans. 31(5), 1020–1027 (2003). [CrossRef] [PubMed]
  11. K. A. Lidke, B. Rieger, D. S. Lidke, and T. M. Jovin, “The role of photon statistics in fluorescence anisotropy imaging,” IEEE Trans. Image Process. 14(9), 1237–1245 (2005). [CrossRef] [PubMed]
  12. A. H. A. Clayton, Q. S. Hanley, D. J. Arndt-Jovin, V. Subramaniam, and T. M. Jovin, “Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM),” Biophys. J. 83(3), 1631–1649 (2002). [CrossRef] [PubMed]
  13. D. A. Bachovchin, S. J. Brown, H. Rosen, and B. F. Cravatt, “Identification of selective inhibitors of uncharacterized enzymes by high-throughput screening with fluorescent activity-based probes,” Nat. Biotechnol. 27(4), 387–394 (2009). [CrossRef] [PubMed]
  14. D. R. Matthews, L. M. Carlin, E. Ofo, P. R. Barber, B. Vojnovic, M. Irving, T. Ng, and S. M. Ameer-Beg, “Time-lapse FRET microscopy using fluorescence anisotropy,” J. Microsc. 237(1), 51–62 (2010). [CrossRef] [PubMed]
  15. F. T. S. Chan, C. F. Kaminski, and G. S. Kaminski Schierle, “HomoFRET fluorescence anisotropy imaging as a tool to study molecular self-assembly in live cells,” ChemPhysChem (2011), doi:. [CrossRef] [PubMed]
  16. B. Valeur and G. Weber, “Resolution of the fluorescence excitation spectrum of indole into the 1La and 1Lb excitation bands,” Photochem. Photobiol. 25(5), 441–444 (1977). [CrossRef] [PubMed]
  17. P. Blandin, S. Lévêque-Fort, S. Lécart, J. C. Cossec, M.-C. Potier, Z. Lenkei, F. Druon, and P. Georges, “Time-gated total internal reflection fluorescence microscopy with a supercontinuum excitation source,” Appl. Opt. 48(3), 553–559 (2009). [CrossRef] [PubMed]
  18. J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227(3), 203–215 (2007). [CrossRef] [PubMed]
  19. J. Y. Ye, C. J. Divin, J. R. Baker, and T. B. Norris, “Whole spectrum fluorescence detection with ultrafast white light excitation,” Opt. Express 15(16), 10439–10445 (2007). [CrossRef] [PubMed]
  20. C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Önfelt, D. M. Davis, M A A. Neil, and P. M. W. French, “An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy,” J. Phys. D Appl. Phys. 37(23), 3296–3303 (2004). [CrossRef]
  21. G. McConnell, “Confocal laser scanning fluorescence microscopy with a visible continuum source,” Opt. Express 12(13), 2844–2850 (2004). [CrossRef] [PubMed]
  22. M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis,” Biophys. J. 94(2), L14–L16 (2008). [CrossRef]
  23. Q. S. Hanley and A. H. Clayton, “AB-plot assisted determination of fluorophore mixtures in a fluorescence lifetime microscope using spectra or quenchers,” J. Microsc. 218(1), 62–67 (2005). [CrossRef] [PubMed]
  24. S. Schlachter, A. D. Elder, A. Esposito, G. S. Kaminski, J. H. Frank, L. K. van Geest, and C. F. Kaminski, “mhFLIM: resolution of heterogeneous fluorescence decays in widefield lifetime microscopy,” Opt. Express 17(3), 1557–1570 (2009). [CrossRef] [PubMed]
  25. M. A. Rizzo and D. W. Piston, “High-contrast imaging of fluorescent protein FRET by fluorescence polarization microscopy,” Biophys. J. 88(2), L14–L16 (2005). [CrossRef]
  26. T. J. van Ham, A. Esposito, J. R. Kumita, S. T. D. Hsu, G. S. Kaminski Schierle, C. F. Kaminski, C. M. Dobson, E. A. A. Nollen, and C. W. Bertoncini, “Towards multiparametric fluorescent imaging of amyloid formation: studies of a YFP model of alpha-synuclein aggregation,” J. Mol. Biol. 395(3), 627–642 (2010). [CrossRef]
  27. H. B. Manning, G. T. Kennedy, D. M. Owen, D. M. Grant, A. I. Magee, M. A. Neil, Y. Itoh, C. Dunsby, and P. M. French, “A compact, multidimensional spectrofluorometer exploiting supercontinuum generation,” J. Biophoton. 1(6), 494 (2008). [CrossRef]
  28. H. C. Gerritsen, A. V. Agronskaia, A. N. Bader, and A. Esposito, “Time Domain FLIM: theory, Instrumentation and data analysis,” in FRET & FLIM Imaging Techniques, T. W. Gadella, ed. (Elsevier, Amsterdam, The Netherlands, 2009).
  29. A. Esposito, H. C. Gerritsen, T. Oggier, F. Lustenberger, and F. S. Wouters, “Innovating lifetime microscopy: a compact and simple tool for life sciences, screening, and diagnostics,” J. Biomed. Opt. 11(3), 034016 (2006). [CrossRef]
  30. L. Pancheri and D. Stoppa, “A SPAD-based Pixel Linear Array for High-Speed Time-Gated Fluorescence Lifetime Imaging,” 2009 Proc. of Esscirc, 429–432 (2009).
  31. D. M. Grant, W. Zhang, E. J. McGhee, T. D. Bunney, C. B. Talbot, S. Kumar, I. Munro, C. Dunsby, M. A. Neil, M. Katan, and P. M. French, “Multiplexed FRET to image multiple signaling events in live cells,” Biophys. J. 95(10), L69–L71 (2008). [CrossRef] [PubMed]
  32. A. D. Jeyasekharan, N. Ayoub, R. Mahen, J. Ries, A. Esposito, E. Rajendra, H. Hattori, R. P. Kulkarni, and A. R. Venkitaraman, “DNA damage regulates the mobility of Brca2 within the nucleoplasm of living cells,” Proc. Natl. Acad. Sci. U.S.A. 107(50), 21937–21942 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 5 Fig. 2
 
Fig. 3 Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited