OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 3 — Mar. 18, 2011

Gold nanoantenna resonance diagnostics via transversal particle plasmon luminescence

Matthias D. Wissert, Carola Moosmann, Konstantin S. Ilin, Michael Siegel, Uli Lemmer, and Hans-Jürgen Eisler  »View Author Affiliations


Optics Express, Vol. 19, Issue 4, pp. 3686-3693 (2011)
http://dx.doi.org/10.1364/OE.19.003686


View Full Text Article

Enhanced HTML    Acrobat PDF (988 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We perform two-photon excitation confocal experiments on coupled gold nanoantennas and observe time-integrated luminescence spectra that match plasmonic mode emission in the far-field. We show that the transversal particle plasmon mode can be excited, using excitation light that is cross-polarized with respect to the gold luminescence signal and therefore oriented along the long axis of the dipole gold antenna. We provide evidence for losses in polarization information from the excitation channel to the luminescence response due to the nature of the energy and momentum transfer. Finally, we map out the two-photon induced luminescence intensity profile for a fixed excitation wavelength λ and varying antenna arm length L.

© 2011 Optical Society of America

OCIS Codes
(260.3910) Physical optics : Metal optics
(260.5740) Physical optics : Resonance
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

History
Original Manuscript: December 8, 2010
Revised Manuscript: January 20, 2011
Manuscript Accepted: January 20, 2011
Published: February 10, 2011

Virtual Issues
Vol. 6, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Matthias D. Wissert, Carola Moosmann, Konstantin S. Ilin, Michael Siegel, Uli Lemmer, and Hans-Jürgen Eisler, "Gold nanoantenna resonance diagnostics via transversal particle plasmon luminescence," Opt. Express 19, 3686-3693 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-4-3686


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Pohl, "Near field optics seen as an antenna problem," In Near-Field Optics: Principles and Applications, M. Ohtsu and X. Zhu, editors, World Scientific, Singapore pp. 9-21 (2000).
  2. K. Crozier, A. Sundaramurthy, G. Kino, and C. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003). [CrossRef]
  3. J. Farahani, D. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: A tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005). [CrossRef] [PubMed]
  4. S. Kühn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna," Phys. Rev. Lett. 97, 017402 (2006). [CrossRef] [PubMed]
  5. L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007). [CrossRef] [PubMed]
  6. P. Ghenuche, S. Cherukulappurath, T. Taminiau, N. van Hulst, and R. Quidant, "Spectroscopic mode mapping of resonant plasmon nanoantennas," Phys. Rev. Lett. 101, 116805 (2008). [CrossRef] [PubMed]
  7. A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, "Field enhancement and gap dependent resonance in a system of two opposing tip-to-tip au nanotriangles," Phys. Rev. B 72, 165409 (2005). [CrossRef]
  8. P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, and W. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas," Phys. Rev. Lett. 94, 017402 (2005). [CrossRef] [PubMed]
  9. O. Muskens, V. Giannini, J. S’anchez, and J. Gómez-Rivas, "Optical scattering resonances of single and coupled dimer plasmonic nanoantennas," Opt. Express 15, 17736-17746 (2007). [CrossRef] [PubMed]
  10. M. Wissert, A. Schell, K. Ilin, M. Siegel, and H.-J. Eisler, "Nanoengineering and characterization of gold dipole antennas with enhanced integrated scattering properties," Nanotechnology 20, 425203 (2009). [CrossRef] [PubMed]
  11. P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, "Resonant optical antennas," Science 308, 1607-1608 (2005). [CrossRef] [PubMed]
  12. J. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, "Mode imaging and selection in strongly coupled nanoantennas," Nano Lett. 10, 2106-2110 (2010). [CrossRef]
  13. M. Schnell, A. Garcia-Etxarri, J. Alkorta, J. Aizpurua, and R. Hillenbrand, "Phase-resolved mapping of the nearfield vector and polarization state in nanoscale antenna gaps," Nano Lett. 10, 3524-3528 (2010). [CrossRef] [PubMed]
  14. N. Engheta, "Circuits with light at nanoscales: Optical nanocircuits inspired by metamaterials," Science 317, 1698-1702 (2007). [CrossRef] [PubMed]
  15. A. Mooradian, "Photoluminescence of metals," Phys. Rev. Lett. 22, 185-187 (1969). [CrossRef]
  16. G. T. Boyd, Z. Yu, and Y. Shen, "Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces," Phys. Rev. B 33, 7923-7936 (1986). [CrossRef]
  17. M. Mohamed, V. Volkov, S. Link, and M. El-Sayed, "The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal," Chem. Phys. Lett. 317, 517-523 (2000). [CrossRef]
  18. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. Wiederrecht, "Surface plasmon characteristics of tunable photoluminescence in single gold nanorods," Phys. Rev. Lett. 95, 267405 (2005). [CrossRef]
  19. E. Dulkeith, T. Niedereichholz, T. Klar, J. Feldmann, G. von Plessen, D. Gittins, K. Mayya, and F. Caruso, "Plasmon emission in photoexcited gold nanoparticles," Phys. Rev. B 70, 205424 (2004). [CrossRef]
  20. M. Wissert, K. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, "Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation," Nano Lett. 10, 4161-4165 (2010). [CrossRef] [PubMed]
  21. Manufacturer data provided by Zeiss.
  22. Lumerical FDTD Solution, http://www.lumerical.com/.
  23. MIT, Photonic Bandgap Fibers & Devices Group, "Indium tin oxide (ITO)," http://mitpbg. mit.edu/Pages/ITO.html.
  24. P. Johnson, and R. Christy, "Optical constants of noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  25. K. Imura, T. Nagahara, and H. Okamoto, "Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes," J. Phys. Chem. B 109, 13214-13220 (2005). [CrossRef]
  26. M. Scolari, A. Mews, N. Fu, A. Myaltsin, T. Assmus, K. Balasubramanian, M. Burghard, and K. Kern, "Surface enhanced Raman scattering of carbon nanotubes decorated by individual fluorescent gold particles," J. Phys. Chem. C 112, 391-396 (2008). [CrossRef]
  27. M. Wissert, K. Ilin, M. Siegel, U. Lemmer, and H.-J. Eisler, "Highly localized non-linear optical white light response at nanorod ends from non-resonant excitation," Nanoscale 2, 1018-1020 (2010). [CrossRef] [PubMed]
  28. D.-S. Wang, F.-Y. Hsu, and C.-W. Lin, "Surface plasmon effects on two photon luminescence of gold nanorods," Opt. Express 17, 11350-11359 (2009). [CrossRef] [PubMed]
  29. L. Novotny, and B. Hecht, Principles of Nano-Optics, (Cambridge University Press, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited