OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 3 — Mar. 18, 2011

Imaging beyond the ballistic limit in coherence imaging using multiply scattered light

Michael G. Giacomelli and Adam Wax  »View Author Affiliations

Optics Express, Vol. 19, Issue 5, pp. 4268-4279 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1646 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an imaging system based on low coherence interferometric detection of multiply scattered light for extended depth imaging into highly scattering media. By incorporating angle-resolved detection, coherence imaging with multiply scattered photons is shown to be both feasible and potentially superior to existing techniques for performing time-resolved measurements of scattered light. Imaging is demonstrated through nearly 100 mean free paths of scattering phantom in a single-ended geometry. The resolution and imaging contrast are compared to those obtained with conventional OCT systems which chiefly detect singly scattered light.

© 2011 OSA

OCIS Codes
(290.0290) Scattering : Scattering
(290.4210) Scattering : Multiple scattering
(100.3175) Image processing : Interferometric imaging

ToC Category:

Original Manuscript: January 18, 2011
Revised Manuscript: February 14, 2011
Manuscript Accepted: February 15, 2011
Published: February 17, 2011

Virtual Issues
Vol. 6, Iss. 3 Virtual Journal for Biomedical Optics

Michael G. Giacomelli and Adam Wax, "Imaging beyond the ballistic limit in coherence imaging using multiply scattered light," Opt. Express 19, 4268-4279 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994). [CrossRef] [PubMed]
  2. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  3. M. R. Hee, J. A. Izatt, J. M. Jacobson, J. G. Fujimoto, and E. A. Swanson, “Femtosecond transillumination optical coherence tomography,” Opt. Lett. 18(12), 950–952 (1993). [CrossRef] [PubMed]
  4. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” Signal Process. 21, 57–75 (2002).
  5. J. Swartling, A. Bassi, C. D’Andrea, A. Pifferi, A. Torricelli, and R. Cubeddu, “Dynamic time-resolved diffuse spectroscopy based on supercontinuum light pulses,” Appl. Opt. 44(22), 4684–4692 (2005). [CrossRef] [PubMed]
  6. G. Kumar and J. M. Schmitt, “Optimal probe geometry for near-infrared spectroscopy of biological tissue,” Appl. Opt. 36(10), 2286–2293 (1997). [CrossRef] [PubMed]
  7. F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum. 71(1), 256 (2000). [CrossRef]
  8. B. Pogue, M. Testorf, T. McBride, U. Osterberg, and K. Paulsen, “Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection,” Opt. Express 1(13), 391–403 (1997). [CrossRef] [PubMed]
  9. K. Chen, L. T. Perelman, Q. Zhang, R. R. Dasari, and M. S. Feld, “Optical computed tomography in a turbid medium using early arriving photons,” J. Biomed. Opt. 5(2), 144–154 (2000). [CrossRef] [PubMed]
  10. C. V. Zint, W. Uhring, M. Torregrossa, B. Cunin, and P. Poulet, “Streak camera: a multidetector for diffuse optical tomography,” Appl. Opt. 42(16), 3313–3320 (2003). [CrossRef] [PubMed]
  11. M. J. Yadlowsky, J. M. Schmitt, and R. F. Bonner, “Multiple scattering in optical coherence microscopy,” Appl. Opt. 34(25), 5699–5707 (1995). [CrossRef] [PubMed]
  12. A. Wax and J. E. Thomas, “Measurement of smoothed Wigner phase-space distributions for small-angle scattering in a turbid medium,” J. Opt. Soc. Am. A 15(7), 1896–1908 (1998). [CrossRef]
  13. R. K. Wang, “Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues,” Phys. Med. Biol. 47(13), 2281–2299 (2002). [CrossRef] [PubMed]
  14. S. Farsiu, J. Christofferson, B. Eriksson, P. Milanfar, B. Friedlander, A. Shakouri, and R. Nowak, “Statistical detection and imaging of objects hidden in turbid media using ballistic photons,” Appl. Opt. 46(23), 5805–5822 (2007). [CrossRef] [PubMed]
  15. J. W. Pyhtila, R. N. Graf, and A. Wax, “Determining nuclear morphology using an improved angle-resolved low coherence interferometry system,” Opt. Express 11(25), 3473–3484 (2003). [CrossRef] [PubMed]
  16. R. N. Graf, W. J. Brown, and A. Wax, “Parallel frequency-domain optical coherence tomography scatter-mode imaging of the hamster cheek pouch using a thermal light source,” Opt. Lett. 33(12), 1285–1287 (2008). [CrossRef] [PubMed]
  17. R. Splinter, R. H. Svenson, L. Littmann, J. R. Tuntelder, C. H. Chuang, G. P. Tatsis, and M. Thompson, “Optical properties of normal, diseased, and laser photocoagulated myocardium at the Nd: YAG wavelength,” Lasers Surg. Med. 11(2), 117–124 (1991). [CrossRef] [PubMed]
  18. R. Splinter, W. F. Cheong, M. J. van Gemert, and A. J. Welch, “In vitro optical properties of human and canine brain and urinary bladder tissues at 633 nm,” Lasers Surg. Med. 9(1), 37–41 (1989). [CrossRef] [PubMed]
  19. N. Valim, J. Brock, and M. Niedre, “Experimental measurement of time-dependant photon scatter for diffuse optical tomography,” J. Biomed. Opt. 15(6), 065006 (2010). [CrossRef]
  20. M. Burcin Unlu, O. Birgul, R. Shafiiha, G. Gulsen, and O. Nalcioglu, “Diffuse optical tomographic reconstruction using multifrequency data,” J. Biomed. Opt. 11(5), 054008 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited