OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 4 — May. 4, 2011

Extended and knotted optical traps in three dimensions

Elisabeth R. Shanblatt and David G. Grier  »View Author Affiliations


Optics Express, Vol. 19, Issue 7, pp. 5833-5838 (2011)
http://dx.doi.org/10.1364/OE.19.005833


View Full Text Article

Enhanced HTML    Acrobat PDF (1011 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a method for projecting holographic optical traps that are extended along arbitrary curves in three dimensions, and whose amplitude and phase profiles are specified independently. This approach can be used to create bright optical traps with knotted optical force fields.

© 2011 OSA

OCIS Codes
(090.1760) Holography : Computer holography
(140.7010) Lasers and laser optics : Laser trapping

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: December 23, 2010
Revised Manuscript: March 1, 2011
Manuscript Accepted: March 1, 2011
Published: March 15, 2011

Virtual Issues
Vol. 6, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Elisabeth R. Shanblatt and David G. Grier, "Extended and knotted optical traps in three dimensions," Opt. Express 19, 5833-5838 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-7-5833


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Roichman and D. G. Grier, “Projecting extended optical traps with shape-phase holography,” Opt. Lett. 31, 1675–1677 (2006). [CrossRef] [PubMed]
  2. Y. Roichman and D. G. Grier, “Three-dimensional holographic ring traps,” Proc. SPIE 6483, 64830F (2007). [CrossRef]
  3. Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical forces arising from phase gradients,” Phys. Rev. Lett. 100, 013602 (2008). [CrossRef] [PubMed]
  4. S.-H. Lee, Y. Roichman, and D. G. Grier, “Optical solenoid beams,” Opt. Express 18, 6988–6993 (2010). [CrossRef] [PubMed]
  5. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef] [PubMed]
  6. H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995). [CrossRef]
  7. N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt. 43, 2485–2491 (1996). [CrossRef]
  8. K. T. Gahagan and G. A. Swartzlander, “Optical vortex trapping of particles,” Opt. Lett. 21, 827–829 (1996). [CrossRef] [PubMed]
  9. K. Ladavac and D. G. Grier, “Microoptomechanical pump assembled and driven by holographic optical vortex arrays,” Opt. Express 12, 1144–1149 (2004). [CrossRef] [PubMed]
  10. K. Ladavac and D. G. Grier, “Colloidal hydrodynamic coupling in concentric optical vortices,” Europhys. Lett. 70, 548–554 (2005). [CrossRef]
  11. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995). [CrossRef] [PubMed]
  12. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (McGraw-Hill, 2005).
  13. G. C. Sherman, “Application of the convolution theorem to Rayleigh’s integral formulas,” J. Opt. Soc. Am. 57, 546–547 (1967). [CrossRef] [PubMed]
  14. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24, 608–610 (1999). [CrossRef]
  15. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, “Multi-functional optical tweezers using computer-generated holograms,” Opt. Commun. 185, 77–82 (2000). [CrossRef]
  16. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002). [CrossRef]
  17. J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt. 45, 897–903 (2006). [CrossRef] [PubMed]
  18. Y. Roichman, I. Cholis, and D. G. Grier, “Volumetric imaging of holographic optical traps,” Opt. Express 14, 10907–10912 (2006). [CrossRef] [PubMed]
  19. M. Polin, K. Ladavac, S.-H. Lee, Y. Roichman, and D. G. Grier, “Optimized holographic optical traps,” Opt. Express 13, 5831–5845 (2005). [CrossRef] [PubMed]
  20. J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci. 179, 298–310 (1996). [CrossRef]
  21. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef] [PubMed]
  22. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett. 88, 053601 (2002). [CrossRef] [PubMed]
  23. J. E. Curtis and D. G. Grier, “Structure of optical vortices,” Phys. Rev. Lett. 90, 133901 (2003). [CrossRef] [PubMed]
  24. S. Sundbeck, I. Gruzberg, and D. G. Grier, “Structure and scaling of helical modes of light,” Opt. Lett. 30, 477–479 (2005). [CrossRef] [PubMed]
  25. J. Leach, M. R. Dennis, J. Courtial, and M. J. Padgett, “Laser beams: knotted threads of darkness,” Nature 432, 165 (2004). [CrossRef] [PubMed]
  26. M. R. Dennis, R. P. King, J. Barry, K. O’Holleran, and M. J. Padgett, “Isolated optical vortex knots,” Nat. Phys. 6, 53–56 (2010). [CrossRef]
  27. W. T. M. Irvine and D. Bouwmeester, “Linked and knotted beams of light,” Nat. Phys. 4, 716–720 (2008). [CrossRef]
  28. L. Faddeev and A. J. Niemi, “Stable knot-like structures in classical field theory,” Nature 387, 58–61 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

Supplementary Material


» Media 1: MPG (520 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited