OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 4 — May. 4, 2011

Spectral characterization of biological aerosol particles using two-wavelength excited laser-induced fluorescence and elastic scattering measurements

Vasanthi Sivaprakasam, Horn-Bond Lin, Alan L. Huston, and Jay D. Eversole  »View Author Affiliations


Optics Express, Vol. 19, Issue 7, pp. 6191-6208 (2011)
http://dx.doi.org/10.1364/OE.19.006191


View Full Text Article

Enhanced HTML    Acrobat PDF (1749 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A two-wavelength laser-induced fluorescence (LIF) instrument has been developed and used to characterize individual biological aerosol particles, including biological warfare (BW) agent surrogates. Fluorescence in discrete spectral bands from widely different species, and also from similar species under different growth conditions were measured and compared. The two-wavelength excitation approach was found to increase discrimination among several biological materials, and especially with respect to diesel exhaust particles, a common interferent for LIF BW detection systems. The spectral characteristics of a variety of biological materials and ambient air components have been studied as a function of aerosol particle size and incident fluence.

© 2011 OSA

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(290.5850) Scattering : Scattering, particles
(300.2530) Spectroscopy : Fluorescence, laser-induced

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: December 2, 2010
Revised Manuscript: February 3, 2011
Manuscript Accepted: February 4, 2011
Published: March 18, 2011

Virtual Issues
Vol. 6, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Vasanthi Sivaprakasam, Horn-Bond Lin, Alan L. Huston, and Jay D. Eversole, "Spectral characterization of biological aerosol particles using two-wavelength excited laser-induced fluorescence and elastic scattering measurements," Opt. Express 19, 6191-6208 (2011)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-19-7-6191


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno, “Fluorescent particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol. 23(4), 653–664 (1995). [CrossRef]
  2. M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, and D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol. 30(2), 174–185 (1999). [CrossRef]
  3. F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol. 3(4-5), 240–248 (1999). [CrossRef]
  4. Y. L. Pan, J. Hartings, R. Pinnick, S. Hill, J. Halverson, and R. Chang, “Single particle fluorescence spectrometer for ambient aerosols,” Aerosol Sci. Technol. 37(8), 628–639 (2003). [CrossRef]
  5. Y. L. Pan, S. Holler, R. K. Chang, S. C. Hill, R. G. Pinnick, S. Niles, and J. R. Bottiger, “Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a 351- or a 266-nm ultraviolet laser,” Opt. Lett. 24(2), 116–118 (1999). [CrossRef]
  6. P. P. Hairston, J. Ho, and F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci. 28(3), 471–482 (1997). [CrossRef] [PubMed]
  7. P. H. Kaye, J. E. Barton, E. Hirst, and J. M. Clark, “Simultaneous light scattering and intrinsic fluorescence measurement for the classification of airborne particles,” Appl. Opt. 39(21), 3738–3745 (2000). [CrossRef]
  8. V. Sivaprakasam, A. Huston, C. Scotto, and J. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt. Express 12(19), 4457–4466 (2004). [CrossRef] [PubMed]
  9. P. H. Kaye, W. R. Stanley, E. Hirst, E. V. Foot, K. L. Baxter, and S. J. Barrington, “Single particle multichannel bio-aerosol fluorescence sensor,” Opt. Express 13(10), 3583–3593 (2005). [CrossRef] [PubMed]
  10. K. Davitt, Y.-K. Song, W. Patterson Iii, A. V. Nurmikko, M. Gherasimova, J. Han, Y.-L. Pan, and R. K. Chang, “290 and 340 nm UV LED arrays for fluorescence detection from single airborne particles,” Opt. Express 13(23), 9548–9555 (2005). [CrossRef] [PubMed]
  11. Y. L. Pan, V. Boutou, J. R. Bottiger, S. S. Zhang, J. P. Wolf, and R. K. Chang, “A Puff of Air Sorts Bioaerosols for Pathogen Identification,” Aerosol Sci. Technol. 38(6), 598–602 (2004). [CrossRef]
  12. V. Sivaprakasam, T. Pletcher, J. E. Tucker, A. L. Huston, J. McGinn, D. Keller, and J. D. Eversole, “Classification and selective collection of individual aerosol particles using laser-induced fluorescence,” Appl. Opt. 48(4), B126–B136 (2009). [CrossRef] [PubMed]
  13. Vtech Engineering Corporation, http://www.vtechcorp.com .
  14. Sono-Tek Corporation, http://www.sono-tek.com/ .
  15. H. Microdrop Technologies Gmb, http://www.microdrop.de/ .
  16. V. Sivaprakasam, A. Huston, H. B. Lin, J. D. Eversole, P. Falkenstein, and A. Schultz, “Field test results and ambient aerosol measurements using dual wavelength fluorescence excitation and elastic scatter for bioaerosols”, SPIE conference,” Proceedings 6554, R5540 (2007).
  17. G. W. Faris, R. A. Copeland, K. Mortelmans, and B. V. Bronk, “Spectrally resolved absolute fluorescence cross sections for bacillus spores,” Appl. Opt. 36(4), 958–967 (1997). [CrossRef] [PubMed]
  18. Y. L. Pan, R. G. Pinnick, S. C. Hill, S. Niles, S. Holler, J. R. Bottiger, J. P. Wolf, and R. K. Chang, “Dynamics of photon-induced degradation and fluorescence in riboflavin microparticles,” Appl. Phys. B 72, 449–454 (2001).
  19. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965). [CrossRef]
  20. L. Yan, “Characterization of Engineered Nanomaterial by spectroscopic Ellipsometry,” Horiba Scientific Application Note, Biotechnology UVISEL, SE26.
  21. X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48(24), 4165–4172 (2003). [CrossRef]
  22. V. A. Markel and V. M. Shalaev, “Geometrical renormalization approach to calculating optical properties of fractal carbonaceous soot,” J. Opt. Soc. Am. A 18(5), 1112–1121 (2001). [CrossRef]
  23. C. D. Litton, “Studies of the measurement of respirable coal dusts and diesel particulate matter,” Meas. Sci. Technol. 13(3), 365–374 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited