OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 3 — Feb. 29, 2012

Low divergence photonic nanojets from Si3N4 microdisks

D. McCloskey, Jing Jing Wang, and J.F. Donegan  »View Author Affiliations

Optics Express, Vol. 20, Issue 1, pp. 128-140 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1585 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High intensity sub-wavelength spots and low divergence nanojets are observed in a system of Si3N4 microdisks illuminated from the side with laser light of wavelengths 488 nm, 532 nm and 633 nm. The disks are of height 400 nm with diameters ranging from 1μm to 10μm. Light scattered from the disk and substrate is observed by imaging from above. In free space light is focused inside the disks and a sub wavelength spot is observed, whereas in water the refractive index contrast is such that photonic nanojets are formed. The angular distribution of the intensity compares well to the analytical solution for the case of an infinite cylinder. Two distinct cases of scattering pattern are observed with even and odd numbers of lobes. Finally when the disks are illuminated with a focused Gaussian beam perpendicular to the substrate an extremely low divergence beam is observed. This beam has a divergence angle over 10 times smaller than a focused Gaussian in free space with the same waist.

© 2011 OSA

OCIS Codes
(290.4020) Scattering : Mie theory
(290.5850) Scattering : Scattering, particles

ToC Category:

Original Manuscript: October 31, 2011
Revised Manuscript: December 1, 2011
Manuscript Accepted: December 2, 2011
Published: December 19, 2011

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

D. McCloskey, Jing Jing Wang, and J.F. Donegan, "Low divergence photonic nanojets from Si3N4 microdisks," Opt. Express 20, 128-140 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Mie, “Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen,” Annalen der Physik 25(3), 377–445 (1908). [CrossRef]
  2. Mie Theory 1908–2008 Present developments and interdisciplinary aspects of light scattering, W. Hergert and T. Wriedt eds.(Univ. Bremen, 2008).
  3. J. Kofler and N. Arnold, “Axially symmetric focusing as a cuspoid diffraction catastrophe: Scalar and vector cases and comparison with the theory of Mie,” Phys. Rev. B 73(23), 235401 (2006). [CrossRef]
  4. P. Chýlek, J. D. Pendleton, and R. G. Pinnick, “Internal and near-surface scattered field of a spherical particle at resonant conditions,” Appl. Opt. 24(23), 3940–3942 (1985). [CrossRef] [PubMed]
  5. D. S. Benincasa, P. W. Barber, J.-Z. Zhang, W.-F. Hsieh, and R. K. Chang, “Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers,” Appl. Opt. 26(7), 1348–1356 (1987). [CrossRef] [PubMed]
  6. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004). [CrossRef] [PubMed]
  7. X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13(2), 526–533 (2005). [CrossRef] [PubMed]
  8. A. V. Itagi and W. A. Challener, “Optics of photonic nanojets,” J. Opt. Soc. Am. A 22(12), 2847–2858 (2005). [CrossRef] [PubMed]
  9. D. A. Fletcher, K. E. Goodson, and G. S. Kino, “Focusing in microlenses close to a wavelength in diameter,” Opt. Lett. 26(7), 399–401 (2001). [CrossRef] [PubMed]
  10. A. Devilez, B. Stout, N. Bonod, and E. Popov, “Spectral analysis of three-dimensional photonic jets,” Opt. Express 16(18), 14200–14212 (2008). [CrossRef] [PubMed]
  11. Z. Chen, A. Taflove, X. Li, and V. Backman, “Superenhanced backscattering of light by nanoparticles,” Opt. Lett. 31(2), 196–198 (2006). [CrossRef] [PubMed]
  12. S. Lecler, Y. Takakura, and P. Meyrueis, “Properties of a three-dimensional photonic jet,” Opt. Lett. 30(19), 2641–2643 (2005). [CrossRef] [PubMed]
  13. A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, “Experimental confirmation of backscattering enhancement induced by a photonic jet,” Appl. Phys. Lett. 89(22), 221118 (2006). [CrossRef]
  14. P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express 16(10), 6930–6940 (2008). [CrossRef] [PubMed]
  15. M. Gerlach, Y. P. Rakovich, and J. F. Donegan, “Nanojets and directional emission in symmetric photonic molecules,” Opt. Express 15(25), 17343–17350 (2007). [CrossRef] [PubMed]
  16. A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic Nanojets,” J Comput Theor Nanosci 6(9), 1979–1992 (2009). [CrossRef] [PubMed]
  17. V. N. Astratov, “Fundamentals and Applications of Microsphere Resonator Circuits,” in Photonic Microresonator Research and Applications, L. Chremmos, O. Schwelb, and N.Uzunoglu, eds. (Springer Series in Optical Sciences 156, 2010), pp.423–457.
  18. S. Yang, A. Taflove, and V. Backman, “Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet,” Opt. Express 19(8), 7084–7093 (2011). [CrossRef] [PubMed]
  19. E. McLeod and C. B. Arnold, “Subwavelength direct-write nanopatterning using optically trapped microspheres,” Nat. Nanotechnol. 3(7), 413–417 (2008). [CrossRef] [PubMed]
  20. S.-C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16(18), 13713–13719 (2008). [CrossRef] [PubMed]
  21. D. Gérard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence,” Opt. Express 16(19), 15297–15303 (2008). [CrossRef] [PubMed]
  22. Z. Wang, W. Guo, L. Li, B. Luk'yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2, (2011). [CrossRef]
  23. A. M. Kapitonov and V. N. Astratov, “Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities,” Opt. Lett. 32(4), 409–411 (2007). [CrossRef] [PubMed]
  24. A. Darafsheh, A. Fardad, N. M. Fried, A. N. Antoszyk, H. S. Ying, and V. N. Astratov, “Contact focusing multimodal microprobes for ultraprecise laser tissue surgery,” Opt. Express 19(4), 3440–3448 (2011). [CrossRef] [PubMed]
  25. P. W. Barber and S. C. Hill, “Light Scattering by Particles: Computational Methods,” in Advanced Series in Applied Physics (World Scientific, 1990)
  26. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998)
  27. W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19(9), 1505–1509 (1980). [CrossRef] [PubMed]
  28. M.-S. Kim, T. Scharf, S. Mühlig, C. Rockstuhl, and H. P. Herzig, “Engineering photonic nanojets,” Opt. Express 19(11), 10206–10220 (2011). [CrossRef] [PubMed]
  29. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge, 2006)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited