OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 3 — Feb. 29, 2012

Second-harmonic generation from coupled plasmon modes in a single dimer of gold nanospheres

A. Slablab, L. Le Xuan, M. Zielinski, Y. de Wilde, V. Jacques, D. Chauvat, and J.-F. Roch  »View Author Affiliations

Optics Express, Vol. 20, Issue 1, pp. 220-227 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1251 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that a dimer made of two gold nanospheres exhibits a remarkable efficiency for second-harmonic generation under femtosecond optical excitation. The detectable nonlinear emission for the given particle size and excitation wavelength arises when the two nanoparticles are as close as possible to contact, as in situ controlled and measured using the tip of an atomic force microscope. The excitation wavelength dependence of the second-harmonic signal supports a coupled plasmon resonance origin with radiation from the dimer gap. This nanometer-size light source might be used for high-resolution near-field optical microscopy.

© 2011 OSA

OCIS Codes
(180.0180) Microscopy : Microscopy
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4180) Nonlinear optics : Multiphoton processes
(180.4315) Microscopy : Nonlinear microscopy
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: April 28, 2011
Revised Manuscript: August 2, 2011
Manuscript Accepted: August 5, 2011
Published: December 20, 2011

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

A. Slablab, L. Le Xuan, M. Zielinski, Y. de Wilde, V. Jacques, D. Chauvat, and J.-F. Roch, "Second-harmonic generation from coupled plasmon modes in a single dimer of gold nanospheres," Opt. Express 20, 220-227 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Johnson, H. Yan, R. D. Schaller, P. B. Petersen, P. Yang, and R. J. Saykally, “Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires,” Nano Lett. 2, 279–283 (2002). [CrossRef]
  2. A. B. Djurisić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small 2, 944–961 (2006). [CrossRef]
  3. M. Zielinski, D. Oron, D. Chauvat, and J. Zyss, “Second-harmonic generation from a single core/shell quantum dot,” Small 5, 2835–2840 (2009). [CrossRef] [PubMed]
  4. M. Zielinski, S. Winter, R. Kolkowski, C. Nogues, D. Oron, J. Zyss, and D. Chauvat, “Nanoengineering the second order susceptibility in semiconductor quantum dot heterostructures,” Opt. Express 19, 6657–6670 (2011). [CrossRef] [PubMed]
  5. L. Bonacina, Y. Mugnier, F. Courvoisier, R. Le Dantec, J. Extermann, Y. Lambert, V. Boutou, C. Galez, and J.-P. Wolf, “Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy,” Appl. Phys. B 87, 399–403 (2007). [CrossRef]
  6. L. Le Xuan, C. Zhou, A. Slablab, D. Chauvat, C. Tard, S. Perruchas, T. Gacoin, P. Villeval, and J.-F. Roch, “Photostable second-harmonic generation from a single KTiOPO4 nanocrystal for nonlinear microscopy,” Small 4, 1332–1336 (2008). [CrossRef] [PubMed]
  7. C.-L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging,” Opt. Express 17, 2880–2891(2009). [CrossRef] [PubMed]
  8. A. V. Kachynski, A. N. Kuzmin, M. Nyk, I. Roy, and P. N. Prasad, “Zinc oxide nanocrystals for non-resonant nonlinear optical microscopy in biology and medicine,” J. Phys. Chem. C 112, 10721–10724 (2008). [CrossRef]
  9. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1101 (2007). [CrossRef] [PubMed]
  10. V. L. Brudny, B. S. Mendoza, and W. L. Mochan, “Second-harmonic generation from spherical particles,” Phys. Rev. B 62, 11152–11162 (2000). [CrossRef]
  11. J. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B 21, 1328–1347 (2004). [CrossRef]
  12. J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett. 10, 1717–1721 (2010). [CrossRef] [PubMed]
  13. J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71, 165407–165410 (2005). [CrossRef]
  14. J. Shan, J. I. Dadap, I. Stiopkin, G. A. Reider, and T. F. Heinz, “Experimental study of optical second-harmonic scattering from spherical nanoparticles,” Phys. Rev. A 73, 023819 (2006). [CrossRef]
  15. A. Bouhelier, M. R. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003). [CrossRef] [PubMed]
  16. H. Husu, B. K. Canfield, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local-field effects in the nonlinear optical response of metamaterials,” Metamaterials 2, 155–168 (2008). [CrossRef]
  17. T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett. 103, 257404 (2009). [CrossRef]
  18. A. Benedetti, M. Centini, C. Sibilia, and M. Bertolotti, “Engineering the second harmonic generation pattern from coupled gold nanowires,” J. Opt. Soc. Am. B 27, 408–416 (2010). [CrossRef]
  19. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003). [CrossRef]
  20. T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4, 1627–1631 (2004). [CrossRef]
  21. I. Romero, J. Aizpurua, G. W. Bryant, and F. D. García de Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14, 9988–9999 (2006). [CrossRef] [PubMed]
  22. A. L. Lereu, G. Sanchez-Mosteiro, P. Ghenuche, R. Quidant, and N. F. Van Hulst, “Individual gold dimers investigated by far- and near-field imaging,” J. Microsc. 229, 254–258 (2008). [CrossRef] [PubMed]
  23. S. Schietinger, M. Barth, T. Aichele, and O. Benson, “Plasmon-enhanced single photon emission from a nanoassembled metal diamond hybrid structure at room temperature,” Nano Lett. 9, 1694–1698 (2009). [CrossRef] [PubMed]
  24. P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett. 487, 153–164, (2010). [CrossRef]
  25. M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98, 026104 (2007). [CrossRef] [PubMed]
  26. S. Palomba and L. Novotny, “Near-field imaging with a localized nonlinear light source,” Nano Lett. 9, 3801–3804 (2009). [CrossRef] [PubMed]
  27. R. W. Boyd, Nonlinear Optics (Academic Press, 1992).
  28. We use the gold dielectric constants reported in Ref. [29] for a 500–1400 nm wavelength range and we do not take into account the influence of the substrate. The two GNs are supposed to be in air and the polarization of the excitation field is linear oriented along the dimer axis.
  29. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  30. S.-C. Yang, H. Kobori, C.-L. He, M.-H. Lin, H.-Y. Chen, C. Li, M. Kanehara, T. Teranishi, and S. Gwo, “Plasmon hybridization in individual gold nanocrystal dimers: direct observation of bright and dark modes,” Nano Lett. 10, 632–637 (2010). [CrossRef] [PubMed]
  31. P. Rooney, A. Rezaee, S. Xu, T. Manifar, A. Hassanzadeh, G. Podoprygorina, V. Böhmer, C. Rangan, and S. Mittler, “Control of surface plasmon resonances in dielectrically coated proximate gold nanoparticles immobilized on a substrate,” Phys. Rev. B 77, 235446 (2008). [CrossRef]
  32. Z. Li, T. Shegai, G. Haran, and H. Xu, “Multiple-particle nanoantennas for enormous enhancement and polarization control of light emission,” ACS Nano 3, 637–642 (2009). [CrossRef] [PubMed]
  33. K. Li, M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett. 91, 227402 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited