OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 3 — Feb. 29, 2012

Plasmon enhanced upconversion luminescence near gold nanoparticles–simulation and analysis of the interactions

Stefan Fischer, Florian Hallermann, Toni Eichelkraut, Gero von Plessen, Karl W. Krämer, Daniel Biner, Heiko Steinkemper, Martin Hermle, and Jan C. Goldschmidt  »View Author Affiliations


Optics Express, Vol. 20, Issue 1, pp. 271-282 (2012)
http://dx.doi.org/10.1364/OE.20.000271


View Full Text Article

Enhanced HTML    Acrobat PDF (1551 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate plasmon resonances in gold nanoparticles to enhance the quantum yield of upconverting materials. For this purpose, we use a rate equation model that describes the upconversion of trivalent erbium based upconverters. Changes of the optical field acting on the upconverter and the changes to the transition probabilities of the upconverter in the proximity of a gold nanoparticle are calculated using Mie theory and exact electrodynamic theory respectively. With this data, the influence on the luminescence of the upconverter is determined using the rate equation model. The results show that upconversion luminescence can be increased in the proximity of a spherical gold nanoparticle due to the change in the optical field and the modification of the transition rates.

© 2011 OSA

OCIS Codes
(190.7220) Nonlinear optics : Upconversion
(240.6680) Optics at surfaces : Surface plasmons
(260.3800) Physical optics : Luminescence
(350.6050) Other areas of optics : Solar energy

ToC Category:
Nonlinear Optics

History
Original Manuscript: October 14, 2011
Revised Manuscript: November 18, 2011
Manuscript Accepted: November 21, 2011
Published: December 20, 2011

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Stefan Fischer, Florian Hallermann, Toni Eichelkraut, Gero von Plessen, Karl W. Krämer, Daniel Biner, Heiko Steinkemper, Martin Hermle, and Jan C. Goldschmidt, "Plasmon enhanced upconversion luminescence near gold nanoparticles–simulation and analysis of the interactions," Opt. Express 20, 271-282 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-1-271


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys.92(7), 4117–4122 (2002). [CrossRef]
  2. P. Gibart, F. Auzel, J. C. Guillaume, and K. Zahraman, “Below band-gap IR response of substrate-free GaAs solar cells using two- photon up-conversion,” Jpn. J. Appl. Phys.35, 4401–4402 (1996). [CrossRef]
  3. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961). [CrossRef]
  4. T. Trupke, A. Shalav, B. S. Richards, P. Würfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight,” Sol. Energy Mater. Sol. Cells90(18-19), 3327–3338 (2006). [CrossRef]
  5. K. W. Krämer, D. Biner, G. Frei, H. U. Güdel, M. P. Hehlen, and S. R. Lüthi, “Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors,” Chem. Mater.16(7), 1244–1251 (2004). [CrossRef]
  6. B. S. Richards and A. Shalav, “Enhancing the near-infrared spectral response of silicon optoelectronic devices via up-conversion,” IEEE Trans. Electron. Dev.54(10), 2679–2684 (2007). [CrossRef]
  7. S. Fischer, J. C. Goldschmidt, P. Löper, G. H. Bauer, R. Brüggemann, K. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: Optical and electrical characterization,” J. Appl. Phys.108(4), 044912 (2010). [CrossRef]
  8. A. Shalav, B. S. Richards, and M. A. Green, “Luminescent layers for enhanced silicon solar cell performance: up-conversion,” Sol. Energy Mater. Sol. Cells91(9), 829–842 (2007). [CrossRef]
  9. C. Strümpel, “Application of Erbium-Doped Up-Converters to Silicon Solar Cells,” Ph.D. dissertation (Hartung-Gorre Verlag Konstanz, 2008), pp. 96–101.
  10. J. C. Goldschmidt, S. Fischer, P. Löper, K. W. Krämer, D. Biner, M. Hermle, and S. W. Glunz, “Experimental analysis of upconversion with both coherent monochromatic irradiation and broad spectrum illumination,” Sol. Energy Mater. Sol. Cells95(7), 1960–1963 (2011). [CrossRef]
  11. O. L. Malta, P. A. Santa-Cruz, G. F. de Sa´, and F. Auzel, “Up-conversion yield in glass ceramics containing silver,” J. Solid State Chem.68(2), 314–319 (1987). [CrossRef]
  12. P. Johansson, H. Xu, and M. Käll, “Surface-enhanced Raman scattering and fluorescence near metal nanoparticles,” Phys. Rev. B72(3), 035427 (2005). [CrossRef]
  13. H. Mertens and A. Polman, “Plasmon-enhanced erbium luminescence,” Appl. Phys. Lett.89(21), 211107 (2006). [CrossRef]
  14. F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A205(12), 2844–2861 (2008). [CrossRef]
  15. J. Gersten and A. Nitzan, “Spectroscopic properties of molecules interacting with small dielectric particles,” J. Chem. Phys.75(3), 1139–1152 (1981). [CrossRef]
  16. F. Kaminski, V. Sandoghdar, and M. Agio, “Finite-Difference Time-Domain Modeling of Decay Rates in the Near Field of Metal Nanostructures,” J. Comput. Theor. Nanosci.4, 635–643 (2007).
  17. G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett.90(11), 111107 (2007). [CrossRef]
  18. O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7(9), 2871–2875 (2007). [CrossRef] [PubMed]
  19. J. T. van Wijngaarden, M. M. van Schooneveld, C. de Mello Donegá, and A. Meijerink, “Enhancement of the decay rate by plasmon coupling for Eu 3+ in an Au nanoparticle model system,” Europhys. Lett.93(5), 57005 (2011). [CrossRef]
  20. H. Zhang, Y. Li, I. A. Ivanov, Y. Qu, Y. Huang, and X. Duan, “Plasmonic Modulation of the Upconversion Fluorescence in NaYF4:Yb/Tm Hexaplate Nanocrystals Using Gold Nanoparticles or Nanoshells,” Angew. Chem. Int. Ed.49, 2865–2868 (2010).
  21. N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.)47(27), 7671–7673 (2011). [CrossRef] [PubMed]
  22. S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, and O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett.10(1), 134–138 (2010). [CrossRef] [PubMed]
  23. S. Fischer, H. Steinkemper, P. Löper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped microcrystals based on experimentally determined Einstein coefficienct,” arXiv:1110.2309v2 [physics.optics].
  24. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–174 (2004). [CrossRef] [PubMed]
  25. A. Einstein, “Zur Quantentheorie der Strahlung,” Phys. Z.18, 121–128 (1917).
  26. P. Kubelka and F. Munk, “Ein Beitrag zur Optik der Farbanstriche,” Zeitschrift für technische Physik11, 593–601 (1931).
  27. L. Yang and B. Kruse, “Revised Kubelka-Munk theory. I. Theory and application,” J. Opt. Soc. Am. A21(10), 1933–1941 (2004). [CrossRef] [PubMed]
  28. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev.127(3), 750–761 (1962). [CrossRef]
  29. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys.37(3), 511–520 (1962). [CrossRef]
  30. J. C. Goldschmidt, “Novel Solar Cell Concepts” (Verlag Dr. Hut, München, 2009), pp. 188–197.
  31. Y. S. Kim, P. T. Leung, and T. F. George, “Classical decay rates for molecules in the presence of a spherical surface: A complete treatment,” Surf. Sci.195(1-2), 1–14 (1988). [CrossRef]
  32. H. Mertens, A. F. Koenderink, and A. Polman, “Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model,” Phys. Rev. B76(11), 115123 (2007). [CrossRef]
  33. M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, “Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems,” Phys. Rev. B61(5), 3337–3346 (2000). [CrossRef]
  34. J. F. Suyver, A. Aebischer, S. Garcia-Revilla, P. Gerner, and H. U. Güdel, “Anomalous power dependence of sensitized upconversion luminescence,” Phys. Rev. B71(12), 125123 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited