OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 3 — Feb. 29, 2012

Correcting the detrimental effects of nonuniform intensity distribution on fiber-transmitting laser speckle imaging of blood flow

Hongyan Zhang, Pengcheng Li, Nengyun Feng, Jianjun Qiu, Bing Li, Weihua Luo, and Qingming Luo  »View Author Affiliations


Optics Express, Vol. 20, Issue 1, pp. 508-517 (2012)
http://dx.doi.org/10.1364/OE.20.000508


View Full Text Article

Enhanced HTML    Acrobat PDF (2420 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laser speckle spatial contrast analysis (LSSCA) is superior to laser speckle temporal contrast analysis (LSTCA) in monitoring the fast change in blood flow due to its advantage of high temporal resolution. However, the application of LSSCA which is based on spatial statistics may be limited when there is nonuniform intensity distribution such as fiber-transmitting laser speckle imaging. In this study, we present a normalized laser speckle spatial contrast analysis (nLSSCA) to correct the detrimental effects of nonuniform intensity distribution on the spatial statistics. Through numerical simulation and phantom experiments, it is found that just ten frames of dynamic laser speckle images are sufficient for nLSSCA to achieve effective correction. Furthermore, nLSSCA has higher temporal resolution than LSTCA to respond the change in velocity. LSSCA, LSTCA and nLSSCA are all applied in the fiber-transmitting laser speckle imaging system to analyze the change of cortical blood flow (CBF) during cortical spreading depression (CSD) in rat cortex respectively, and the results suggest that nLSSCA can examine the change of CBF more accurately. For these advantages, nLSSCA could be a potential tool for fiber-transmitting/endoscopic laser speckle imaging.

© 2011 OSA

OCIS Codes
(060.2350) Fiber optics and optical communications : Fiber optics imaging
(100.2960) Image processing : Image analysis
(110.6150) Imaging systems : Speckle imaging

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: September 26, 2011
Revised Manuscript: November 23, 2011
Manuscript Accepted: December 11, 2011
Published: December 21, 2011

Virtual Issues
Vol. 7, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Hongyan Zhang, Pengcheng Li, Nengyun Feng, Jianjun Qiu, Bing Li, Weihua Luo, and Qingming Luo, "Correcting the detrimental effects of nonuniform intensity distribution on fiber-transmitting laser speckle imaging of blood flow," Opt. Express 20, 508-517 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-1-508


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Cheng, Y. Yan, and T. Q. Duong, “Temporal statistical analysis of laser speckle images and its application to retinal blood-flow imaging,” Opt. Express16(14), 10214–10219 (2008). [CrossRef] [PubMed]
  2. G. Watanabe, H. Fujii, and S. Kishi, “Imaging of choroidal hemodynamics in eyes with polypoidal choroidal vasculopathy using laser speckle phenomenon,” Jpn. J. Ophthalmol.52(3), 175–181 (2008). [CrossRef] [PubMed]
  3. K. R. Forrester, C. Stewart, J. Tulip, C. Leonard, and R. C. Bray, “Comparison of laser speckle and laser Doppler perfusion imaging: measurement in human skin and rabbit articular tissue,” Med. Biol. Eng. Comput.40(6), 687–697 (2002). [CrossRef] [PubMed]
  4. B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res.68(2), 143–146 (2004). [CrossRef] [PubMed]
  5. A. K. Dunn, A. Devor, H. Bolay, M. L. Andermann, M. A. Moskowitz, A. M. Dale, and D. A. Boas, “Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation,” Opt. Lett.28(1), 28–30 (2003). [CrossRef] [PubMed]
  6. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001). [CrossRef] [PubMed]
  7. A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt.15(6), 066030 (2010). [CrossRef] [PubMed]
  8. T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab.24(5), 518–525 (2004). [CrossRef] [PubMed]
  9. A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.37(5), 326–330 (1981). [CrossRef]
  10. J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt.1(2), 174–179 (1996). [CrossRef]
  11. S. Ulyanov, Y. Ganilova, D. Zhu, J. Qiu, P. Li, O. Ulianova, and Q. Luo, “LASCA with a small number of scatterers: application for monitoring of microflow,” Europhys. Lett.82(1), 18005 (2008). [CrossRef]
  12. J. F. Dunn, K. R. Forrester, L. Martin, J. Tulip, and R. C. Bray, “A transmissive laser speckle imaging technique for measuring deep tissue blood flow: an example application in finger joints,” Lasers Surg. Med.43(1), 21–28 (2011). [CrossRef] [PubMed]
  13. M. Draijer, E. Hondebrink, T. van Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers Med. Sci.24(4), 639–651 (2009). [CrossRef] [PubMed]
  14. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010). [CrossRef] [PubMed]
  15. K. R. Forrester, C. Stewart, C. Leonard, J. Tulip, and R. C. Bray, “Endoscopic laser imaging of tissue perfusion: new instrumentation and technique,” Lasers Surg. Med.33(3), 151–157 (2003). [CrossRef] [PubMed]
  16. R. C. Bray, K. R. Forrester, J. Reed, C. Leonard, and J. Tulip, “Endoscopic laser speckle imaging of tissue blood flow: applications in the human knee,” J. Orthop. Res.24(8), 1650–1659 (2006). [CrossRef] [PubMed]
  17. S. K. Nadkarni, B. E. Bouma, D. Yelin, A. Gulati, and G. J. Tearney, “Laser speckle imaging of atherosclerotic plaques through optical fiber bundles,” J. Biomed. Opt.13(5), 054016 (2008). [CrossRef] [PubMed]
  18. Z. Hajjarian, J. Xi, F. A. Jaffer, G. J. Tearney, and S. K. Nadkarni, “Intravascular laser speckle imaging catheter for the mechanical evaluation of the arterial wall,” J. Biomed. Opt.16(2), 026005 (2011). [CrossRef] [PubMed]
  19. R. Jenny, “Fundamentals of fiber optics: an introduction for beginners” (2000), http://www.volpi.ch/download/htm/1193/de/Fiber-Optics-en.pdf .
  20. L. Song and D. Elson, “Endoscopic laser speckle contrast imaging system using a fibre image guide,” Proc. SPIE7907, 79070F (2011). [CrossRef]
  21. D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, “Statistics of local speckle contrast,” J. Opt. Soc. Am. A25(1), 9–15 (2008). [CrossRef] [PubMed]
  22. D. D. Duncan and S. J. Kirkpatrick, “The copula: a tool for simulating speckle dynamics,” J. Opt. Soc. Am. A25(1), 231–237 (2008). [CrossRef] [PubMed]
  23. J. Qiu, P. Li, W. Luo, J. Wang, H. Zhang, and Q. Luo, “Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast,” J. Biomed. Opt.15(1), 016003 (2010). [CrossRef] [PubMed]
  24. S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Opt. Lett.33(24), 2886–2888 (2008). [CrossRef] [PubMed]
  25. A. A. P. Leão, “Pial circulation and spreading depression of activity in the cerebral cortex,” J. Neurophysiol.7, 391–396 (1944).
  26. M. Lauritzen, J. P. Dreier, M. Fabricius, J. A. Hartings, R. Graf, and A. J. Strong, “Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury,” J. Cereb. Blood Flow Metab.31(1), 17–35 (2011). [CrossRef] [PubMed]
  27. X. Sun, Y. Wang, S. Chen, W. Luo, P. Li, and Q. Luo, “Simultaneous monitoring of intracellular pH changes and hemodynamic response during cortical spreading depression by fluorescence-corrected multimodal optical imaging,” Neuroimage57(3), 873–884 (2011). [CrossRef] [PubMed]
  28. D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A25(8), 2088–2094 (2008). [CrossRef] [PubMed]
  29. J. C. Ramirez-San-Juan, R. Ramos-García, I. Guizar-Iturbide, G. Martínez-Niconoff, and B. Choi, “Impact of velocity distribution assumption on simplified laser speckle imaging equation,” Opt. Express16(5), 3197–3203 (2008). [CrossRef] [PubMed]
  30. T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. S. Sheu, and S. H. Ong, “New insights to image processing of cortical blood flow monitors using laser speckle imaging,” in Proceedings of IEEE Conference Transaction on Medical Imaging (Department of Electrical and Computer Engineering, Singapore, 2007) Vol. 26, pp. 833–842.
  31. H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt.8(3), 559–564 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited