OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 7 — Jun. 25, 2012

Silencing and enhancement of second-harmonic generation in optical gap antennas

Johann Berthelot, Guillaume Bachelier, Mingxia Song, Padmnabh Rai, Gérard Colas des Francs, Alain Dereux, and Alexandre Bouhelier  »View Author Affiliations


Optics Express, Vol. 20, Issue 10, pp. 10498-10508 (2012)
http://dx.doi.org/10.1364/OE.20.010498


View Full Text Article

Enhanced HTML    Acrobat PDF (1706 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Amplifying local electromagnetic fields by engineering optical interactions between individual constituents of an optical antenna is considered fundamental for efficient nonlinear wavelength conversion in nanometer-scale devices. In contrast to this general statement we show that high field enhancement does not necessarily lead to an optimized nonlinear activity. In particular, we demonstrate that second-harmonic responses generated at strongly interacting optical gap antennas can be significantly suppressed. Numerical simulations are confirming silencing of second-harmonic in these coupled systems despite the existence of local field amplification. We then propose a simple approach to restore and amplify the second-harmonic signal by changing the manner in which electrically-connected optical antennas are interacting in the charge-transfer plasmon regime. Our observations provide critical design rules for realizing optimal structures that are essential for a broad variety of nonlinear surface-enhanced characterizations and for realizing the next generation of electrically-driven optical antennas.

© 2012 OSA

OCIS Codes
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(240.4350) Optics at surfaces : Nonlinear optics at surfaces
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Nonlinear Optics

History
Original Manuscript: February 8, 2012
Revised Manuscript: March 20, 2012
Manuscript Accepted: April 1, 2012
Published: April 23, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Johann Berthelot, Guillaume Bachelier, Mingxia Song, Padmnabh Rai, Gérard Colas des Francs, Alain Dereux, and Alexandre Bouhelier, "Silencing and enhancement of second-harmonic generation in optical gap antennas," Opt. Express 20, 10498-10508 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-10-10498


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Novotny and N. F. Van Hulst, “Antennas for light,” Nat. Photonics5, 83–90 (2011). [CrossRef]
  2. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett.90, 013903 (2003). [CrossRef] [PubMed]
  3. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett.95, 267405 (2005). [CrossRef]
  4. J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett.10, 1717–1721 (2010). [CrossRef] [PubMed]
  5. M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett.5, 799–802 (2005). [CrossRef] [PubMed]
  6. M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett.98, 026104 (2007). [CrossRef] [PubMed]
  7. T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses,” Phys. Rev. Lett.103, 257404 (2009). [CrossRef]
  8. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature453, 757–760 (2008). [CrossRef] [PubMed]
  9. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005). [CrossRef] [PubMed]
  10. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, and A. W. J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. USA102, 15752–15756 (2005). [CrossRef] [PubMed]
  11. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett.7, 941–945 (2007). [CrossRef] [PubMed]
  12. A. García-Martín, D. R. Ward, D. Natelson, and J. C. Cuevas, “Field enhancement in subnanometer metallic gaps,” Phys. Rev. B83, 193404 (2011). [CrossRef]
  13. J. Aizpurua, G. W. Bryant, J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B71, 235420 (2005). [CrossRef]
  14. A. Bouhelier, M. Beversluis, and L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett.82, 5041–5043 (2003). [CrossRef]
  15. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett.94, 017402 (2005). [CrossRef] [PubMed]
  16. P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett.101, 116805 (2008). [CrossRef] [PubMed]
  17. K. D. Ko, A. Kumar, K. H. Fung, R. Ambekar, G. L. Liu, N. X. Fang, J. Kimani, and C. Toussaint, “Nonlinear optical response from arrays of au bowtie nanoantennas,” Nano Lett.11, 61–65 (2011). [CrossRef]
  18. B. Lamprecht, A. Leitner, and F. Aussenegg, “Shg studies of plasmon dephasing in nanoparticles,” Appl. Phys. B68, 419–423 (1999). [CrossRef]
  19. B. Canfield, S. Kujala, K. Jefimovs, J. Turunen, and M. Kauranen, “Linear and nonlinear optical responses influenced by broken symmetry in an array of gold nanoparticles,” Opt. Express12, 5418–5423 (2004). [CrossRef] [PubMed]
  20. M. D. McMahon, R. Lopez, R. F. Haglund, E. A. Ray, and P. H. Bunton, “Second-harmonic generation from arrays of symmetric gold nanoparticles,” Phys. Rev. B73, 041401 (2006). [CrossRef]
  21. C. Hubert, L. Billot, P.-M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett.90, 181105 (2007). [CrossRef]
  22. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science313, 502–504 (2006). [CrossRef] [PubMed]
  23. M. D. McMahon, D. Ferrera, C. T. Bowie, R. Lopez, and R. F. Haglund, “Second harmonic generation from resonantly excited arrays of gold nanoparticles,” Appl. Phys. B87, 259–265 (2007). [CrossRef]
  24. Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett.11, 5519–5523 (2011). [CrossRef] [PubMed]
  25. H. Husu, R. Siikanen, J. Mäkitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, and M. Kauranen, “Metamaterials with tailored nonlinear optical response,” Nano Lett.12, asap (2012). [CrossRef] [PubMed]
  26. J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett.83, 4045–4048 (1999). [CrossRef]
  27. W. L. Mochán, J. A. Maytorena, B. S. Mendoza, and V. L. Brudny, “Second-harmonic generation in arrays of spherical particles,” Phys. Rev. B68, 085318 (2003). [CrossRef]
  28. M. Finazzi, P. Biagioni, M. Celebrano, and L. Duò, “Selection rules for second-harmonic generation in nanoparticles,” Phys. Rev. B76, 125414 (2007). [CrossRef]
  29. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B25, 955–960 (2008). [CrossRef]
  30. J. Butet, G. Bachelier, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Interference between selected dipoles and octupoles in the optical second-harmonic generation from spherical gold nanoparticles,” Phys. Rev. Lett.105, 077401 (2010). [CrossRef] [PubMed]
  31. A. Bouhelier, R. Bachelot, J. Im, G. P. Wiederrecht, G. Lerondel, S. Kostcheev, and P. Royer, “Electromagnetic interactions in plasmonic nanoparticle arrays,” J. Phys. Chem. B109, 3195–3198 (2005). [CrossRef]
  32. C. Huang, A. Bouhelier, G. Colas des Francs, A. Bruyant, A. Guenot, E. Finot, J.-C. Weeber, and A. Dereux, “Gain, detuning, and radiation patterns of nanoparticle optical antennas” Phys. Rev. B78, 155407 (2008). [CrossRef]
  33. W. Rechberger, A. Hohenau, A. Leitner, J. Krenn, B. Lamprecht, and F. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Comm.220, 137–141 (2003). [CrossRef]
  34. A. Slablab, L. Le Xuan, M. Zielinski, Y. de Wilde, V. Jacques, D. Chauvat, and J.-F. Roch, “Second-harmonic generation from coupled plasmon modes in a single dimer of gold nanospheres,” Opt. Express21, 220–227 (2012). [CrossRef]
  35. G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions,” Phys. Rev. B82, 235403 (2010). [CrossRef]
  36. B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett.7, 1251–1255 (2007). [CrossRef] [PubMed]
  37. J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett.10, 2105–2110 (2010). [CrossRef] [PubMed]
  38. S. Sheikholeslami, Y. W. Jun, P. K. Jai, and A. P. Alivisatos, “Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer,” Nano Lett.10, 2655–2660 (2010). [CrossRef] [PubMed]
  39. Y. Pu, R. Grange, C.-L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett.104, 207402 (2010). [CrossRef] [PubMed]
  40. G. Volpe, S. Cherukulappurath, R. Juanola Parramon, G. Molina-Terriza, and R. Quidant, “Controlling the optical near field of nanoantennas with spatial phase-shaped beams” Nano. Lett.9, 3608–3611 (2009). [CrossRef] [PubMed]
  41. H. Park, A. K. L. Lim, J. Park, A. P. Alivisato, and P. L. McEuen, “Fabrication of metallic electrodes with nanometer separation by electromigration,” Appl. Phys. Lett75, 301–303 (1999). [CrossRef]
  42. D. Ward, N. K. Grady, C. S. Levin, N. J. Halas, Y. Wu, P. Nordlander, and D. Natelson, “Electromigrated nanoscale gaps for surface-enhanced raman spectroscopy,” Nano Lett.7, 1396–1400 (2007). [CrossRef] [PubMed]
  43. D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nature Tech.5, 732–736 (2010).
  44. O. Pérez-González, N. Zabala, A. G. Borisov, N. J. Halas, P. Nordlander, and J. Aizpurua, “Optical spectroscopy of conductive junctions in plasmonic cavities,” Nano Lett.10, 3090–3095 (2010). [CrossRef] [PubMed]
  45. A. Mangin, A. Anthore, M. L. Della Rocca, E. Boulat, and P. Lafarge, “Reduced work functions in gold electro-migrated nanogaps,” Phys. Rev. B80, 235432 (2009). [CrossRef]
  46. K. I. Bolotin, F. Kuemmeth, A. N. Pasupathy, and D. C. Ralph, “Metal-nanoparticle single-electron transistors fabricated using electromigration,” Appl. Phys. Lett.84, 3154–3156 (2004). [CrossRef]
  47. S. Mahapatro, A. K. Ghosh, and D. Janes, “Nanometer scale electrode separation (nanogap) using electromigration at room temperature,” IEEE Trans. Nanotech.5, 232–236 (2006). [CrossRef]
  48. B. Stahlmecke and G. Dumpich, “Resistance behaviour and morphological changes during electromigration in gold wires,” J. Phys: Cond. Mat19, 046210 (2007). [CrossRef]
  49. K. Li, M. I. Stockman, and D. J. Bergman, “Enhanced second harmonic generation in a self-similar chain of metal nanospheres,” Phys. Rev. B72, 153401 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited