OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 7 — Jun. 25, 2012

Imaging slit-coupled surface plasmon polaritons using conventional optical microscopy

R. Mehfuz, F. A. Chowdhury, and K. J. Chau  »View Author Affiliations


Optics Express, Vol. 20, Issue 10, pp. 10526-10537 (2012)
http://dx.doi.org/10.1364/OE.20.010526


View Full Text Article

Enhanced HTML    Acrobat PDF (1865 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop a technique that now enables surface plasmon polaritons (SPPs) coupled by nano-patterned slits in a metal film to be detected using conventional optical microscopy with standard objective lenses. The crux of this method is an ultra-thin polymer layer on the metal surface, whose thickness can be varied over a nanoscale range to enable controllable tuning of the SPP momentum. At an optimal layer thickness for which the SPP momentum matches the momentum of light emerging from the slit, the SPP coupling efficiency is enhanced about six times relative to that without the layer. The enhanced efficiency results in distinctive and bright plasmonic signatures near the slit visible by naked eye under an optical microscope. We demonstrate how this capability can be used for parallel measurement through a simple experiment in which the SPP propagation distance is extracted from a single microscope image of an illuminated array of nano-patterned slits on a metal surface. We also use optical microscopy to image the focal region of a plasmonic lens and obtain results consistent with a previously-reported results using near-field optical microscopy. Measurement of SPPs near a nano-slit using conventional and widely-available optical microscopy is an important step towards making nano-plasmonic device technology highly accessible and easy-to-use.

© 2012 OSA

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(240.6680) Optics at surfaces : Surface plasmons
(350.4600) Other areas of optics : Optical engineering

ToC Category:
Optics at Surfaces

History
Original Manuscript: February 21, 2012
Revised Manuscript: April 7, 2012
Manuscript Accepted: April 13, 2012
Published: April 23, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Citation
R. Mehfuz, F. A. Chowdhury, and K. J. Chau, "Imaging slit-coupled surface plasmon polaritons using conventional optical microscopy," Opt. Express 20, 10526-10537 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-10-10526


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sens. Actuators4, 299–304 (1983). [CrossRef]
  2. X. Hoa, A. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress,” Biosens. Bioelectron.23, 151–160 (2007). [CrossRef] [PubMed]
  3. C. Loo, A. Lowery, N. Halas, J. West, and R. Drezek, “Innumotargeted nanoshells for integrated cancer imaging and therapy,” Nano Lett.5, 709–711 (2005). [CrossRef] [PubMed]
  4. T. Okamoto, I. Yamaguchi, and T. Kobayashi, “Local plasmon sensor with gold colloid monolayers deposited upon glass substrates,” Opt. Lett.25, 372–374 (2000). [CrossRef]
  5. E. Kretschmann, “The angular dependence and the polarisation of light emitted by surface plasmons on metals due to roughness,” Opt. Commun.5, 331–336 (1972). [CrossRef]
  6. B. Vohnsen and S. Bozhevolnyi, “Coupling of surface-plasmon polaritons to directional far-field radiation by an individual surface protrusion,” Appl. Opt.40, 6081–6085 (2001). [CrossRef]
  7. A. Hohenau, J. Krenn, A. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett.30, 893–895 (2005). [CrossRef] [PubMed]
  8. B. Steinberger, A. Hohenau, H. Ditlbacher, A. Stepanov, A. Drezet, F. Aussenegg, A. Leitner, and J. Krenn, “Dielectric stripes on gold as surface plasmon waveguides,” Appl. Phys. Lett.88, 094104 (2006). [CrossRef]
  9. T. Homgaard and S. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B75, 245405 (2007). [CrossRef]
  10. B. Rothenhausler and W. Knoll, “Surface-plasmon microscopy,” Nature40, 615–617 (1988).
  11. I. Smolyaninov, C. Davis, J. Elliott, and A. Zayats, “Resolution enhancement of a surface immersion microscope near the plasmon resonance,” Opt. Lett.40, 381–384 (2005).
  12. Biacore: Sensor Surface Handbook (General Electric Company, 2005).
  13. K. Lee and Q. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett.95, 103902 (2005). [CrossRef] [PubMed]
  14. L. Yin, V. Vlasko-Vlasov, J. Pearson, J. Hiller, J. Hua, U. Welp, D. Brown, and C. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett.5, 1399–1402 (2005). [CrossRef] [PubMed]
  15. H. Kihm, K. Lee, D. Kim, J. Kang, and Q. Park, “Control of surface plasmon generation efficiency by slit-width tuning,” Appl. Phys. Lett.92, 051115 (2008). [CrossRef]
  16. P. Lalanne, J. Hugonin, and J. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett.95, 263902 (2005). [CrossRef]
  17. H. Ditlbacher, J. Krenn, A. Hohenau, A. Leitner, and F. Aussenegg, “Efficiency of local light-plasmon coupling,” Appl. Phys. Lett.83, 3665–3667 (2003). [CrossRef]
  18. A. Baudrion, F. de León-Perez, O. Mahboub, A. Hohenau, H. Ditlbacher, F. García-Vidal, J. Dintinger, T. Ebbesen, L. Martín-Moreno, and J. Krenn, “Coupling efficiency of light to surface plasmon polariton for single sub-wavelength holes in a gold film,” Opt. Express16, 3420–3429 (2008). [CrossRef] [PubMed]
  19. J. Laluet, A. Drezet, C. Genet, and T. Ebbesen, “Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon,” New J. Phys.10, 105014 (2008). [CrossRef]
  20. L. Grave de Peralta, “Study of interference between surface plasmon polaritons by leakage radiation microscopy,” J. Opt. Soc. Am. B27, 1513–1517 (2010). [CrossRef]
  21. F. Baida, D. van Labeke, A. Bouhelier, T. Huser, and D. Pohl, “Propagation and diffraction of locally excited surface plasmons,” J. Opt. Soc. Am. A18, 1552–1561 (2001). [CrossRef]
  22. F. López-Tejeira, S. Rodrigo, L. Marín-Moreno, F. García-Vidal, E. Devaux, T. Ebbesen, J. Krenn, I. Radko, S. Bozhevolnyi, M. González, J. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3, 324–328 (2007). [CrossRef]
  23. R. Mehfuz, M. Maqsood, and K. Chau, “Enhancing the efficiency of slit-coupling to surface-plasmon-polaritons via dispersion engineering,” Opt. Express18, 18206–18216 (2010). [CrossRef] [PubMed]
  24. The restriction that the slit sustain only the lowest order mode simplifies the analysis of SPP coupling. Making the slit larger such that it allows higher order modes would then require considerations of possible diffraction-assisted SPP coupling, which was studied in Ref. [25].
  25. M. Maqsood, R. Mehfuz, and K. Chau, “High-throughput diffraction-assisted surface-plasmon-polariton coupling by a super-wavelength slit,” Opt. Express18, 21669–21677 (2010). [CrossRef] [PubMed]
  26. B. Wang, L. Aigouy, E. Bourhis, J. Gierak, J. Hugonin, and P. Lalanne, “Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence,” Appl. Phys. Lett.94, 011114 (2009). [CrossRef]
  27. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited