OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 7 — Jun. 25, 2012

Spectroscopy of 3D-trapped particles inside a hollow-core microstructured optical fiber

Charithra Rajapakse, Fan Wang, Tiffany C. Y. Tang, Peter J. Reece, Sergio G. Leon-Saval, and Alexander Argyros  »View Author Affiliations

Optics Express, Vol. 20, Issue 10, pp. 11232-11240 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1290 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the demonstration of three-dimensional optical trapping inside the core of a hollow-core microstructured optical fiber specifically designed and fabricated for this purpose. Optical trapping was achieved by means of an external tweezers beam incident transversely on the fiber and focused through the fiber cladding. Trapping was achieved for a range of particle sizes from 1 to 5 µm, and manipulation of the particles in three-dimensions through the entire cross-section of the fiber core was demonstrated. Spectroscopy was also performed on single fluorescent particles, with the fluorescence captured and guided in the fiber core. Video tracking methods allowed the optical traps to be characterized and photobleaching of single particles was also observed and characterized.

© 2012 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.4005) Fiber optics and optical communications : Microstructured fibers
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: February 7, 2012
Revised Manuscript: April 5, 2012
Manuscript Accepted: April 26, 2012
Published: May 1, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Charithra Rajapakse, Fan Wang, Tiffany C. Y. Tang, Peter J. Reece, Sergio G. Leon-Saval, and Alexander Argyros, "Spectroscopy of 3D-trapped particles inside a hollow-core microstructured optical fiber," Opt. Express 20, 11232-11240 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature426(6965), 421–424 (2003). [CrossRef] [PubMed]
  2. K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev.37(1), 42–55 (2007). [CrossRef] [PubMed]
  3. S. J. Hart and A. V. Terray, “Refractive-index-driven separation of colloidal polymer particles using optical chromatography,” Appl. Phys. Lett.83(25), 5316–5318 (2003). [CrossRef]
  4. S. J. Cran-McGreehin, K. Dholakia, and T. F. Krauss, “Monolithic integration of microfluidic channels and semiconductor lasers,” Opt. Express14(17), 7723–7729 (2006). [CrossRef] [PubMed]
  5. A. Yao, M. Tassieri, M. Padgett, and J. Cooper, “Microrheology with optical tweezers,” Lab Chip9(17), 2568–2575 (2009). [CrossRef] [PubMed]
  6. P. S. J. Russell, “Photonic crystal fibers,” J. Lightwave Technol.24(12), 4729–4749 (2006). [CrossRef]
  7. D. M. Gherardi, A. E. Carruthers, T. Cizmar, E. M. Wright, and K. Dholakia, “A dual beam photonic crystal fiber trap for microscopic particles,” Appl. Phys. Lett.93(4), 041110 (2008). [CrossRef]
  8. F. Benabid, J. Knight, and P. Russell, “Particle levitation and guidance in hollow-core photonic crystal fiber,” Opt. Express10(21), 1195–1203 (2002). [PubMed]
  9. T. Takekoshi and R. J. Knize, “Optical guiding of atoms through a hollow-core photonic band-gap fiber,” Phys. Rev. Lett.98(21), 210404 (2007). [CrossRef] [PubMed]
  10. P. Domachuk, N. Wolchover, M. Cronin-Golomb, and F. G. Omenetto, “Effect of hollow-core photonic crystal fiber microstructure on transverse optical trapping,” Appl. Phys. Lett.94(14), 141101 (2009). [CrossRef]
  11. T. G. Euser, M. K. Garbos, J. S. Y. Chen, and P. S. J. Russell, “Precise balancing of viscous and radiation forces on a particle in liquid-filled photonic bandgap fiber,” Opt. Lett.34(23), 3674–3676 (2009). [CrossRef] [PubMed]
  12. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science298(5592), 399–402 (2002). [CrossRef] [PubMed]
  13. F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express14(9), 4135–4140 (2006). [CrossRef] [PubMed]
  14. F. M. Cox, A. Argyros, M. C. J. Large, and S. Kalluri, “Surface enhanced Raman scattering in a hollow core microstructured optical fiber,” Opt. Express15(21), 13675–13681 (2007). [CrossRef] [PubMed]
  15. A. Argyros, M. A. van Eijkelenborg, M. C. J. Large, and I. M. Bassett, “Hollow-core microstructured polymer optical fiber,” Opt. Lett.31(2), 172–174 (2006). [CrossRef] [PubMed]
  16. A. Argyros, “Microstructured polymer optical fibers,” J. Lightwave Technol.27(11), 1571–1579 (2009). [CrossRef]
  17. M. A. van Eijkelenborg, A. Argyros, and S. G. Leon-Saval, “Polycarbonate hollow-core microstructured optical fiber,” Opt. Lett.33(21), 2446–2448 (2008). [CrossRef] [PubMed]
  18. A. Argyros and J. Pla, “Hollow-core polymer fibers with a kagome lattice: potential for transmission in the infrared,” Opt. Express15(12), 7713–7719 (2007). [CrossRef] [PubMed]
  19. T. Birks, D. Bird, T. Hedley, J. Pottage, and P. Russell, “Scaling laws and vector effects in bandgap-guiding fibers,” Opt. Express12(1), 69–74 (2004). [CrossRef] [PubMed]
  20. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St. J. Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibers,” Opt. Express15(20), 12680–12685 (2007). [CrossRef] [PubMed]
  21. A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibers,” Opt. Express16(8), 5642–5648 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (3391 KB)     
» Media 2: MOV (3456 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited