OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 7 — Jun. 25, 2012

Looking through the mirror: Optical microcavity-mirror image photonic interaction

Lei Shi, E. Xifré-Pérez, F. J. García de Abajo, and F. Meseguer  »View Author Affiliations

Optics Express, Vol. 20, Issue 10, pp. 11247-11255 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2068 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Although science fiction literature and art portray extraordinary stories of people interacting with their images behind a mirror, we know that they are not real and belong to the realm of fantasy. However, it is well known that charges or magnets near a good electrical conductor experience real attractive or repulsive forces, respectively, originating in the interaction with their images. Here, we show strong interaction between an optical microcavity and its image under external illumination. Specifically, we use silicon nanospheres whose high refractive index makes well-defined optical resonances feasible. The strong interaction produces attractive and repulsive forces depending on incident wavelength, cavity-metal separation and resonance mode symmetry. These intense repulsive photonic forces warrant a new kind of optical levitation that allows us to accurately manipulate small particles, with important consequences for microscopy, optical sensing and control of light by light at the nanoscale.

© 2012 OSA

OCIS Codes
(290.4020) Scattering : Mie theory
(160.3918) Materials : Metamaterials
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: March 13, 2012
Revised Manuscript: April 4, 2012
Manuscript Accepted: April 5, 2012
Published: May 1, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Lei Shi, E. Xifré-Pérez, F. J. García de Abajo, and F. Meseguer, "Looking through the mirror: Optical microcavity-mirror image photonic interaction," Opt. Express 20, 11247-11255 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, Inc, 1962).
  2. E. H. Brandt, “Levitation in physics,” Science243(4889), 349–355 (1989). [CrossRef] [PubMed]
  3. I. V. Lindell, E. Alanen, and K. Mannersalo, “Exact image method for impedance computation of antennas above the ground,” IEEE Trans. Antenn. Propag.AP-33, 937–945 (1984).
  4. R. Fenollosa, F. Meseguer, and M. Tymczenko, “Silicon colloids: from microcavities to photonic sponges,” Adv. Mater. (Deerfield Beach Fla.)20(1), 95–98 (2008). [CrossRef]
  5. E. Xifré-Pérez, R. Fenollosa, and F. Meseguer, “Low order modes in microcavities based on silicon colloids,” Opt. Express19(4), 3455–3463 (2011). [CrossRef] [PubMed]
  6. E. Xifré-Pérez, F. J. García de Abajo, R. Fenollosa, and F. Meseguer, “Photonic binding in silicon-colloid microcavities,” Phys. Rev. Lett.103(10), 103902 (2009). [CrossRef] [PubMed]
  7. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express19(6), 4815–4826 (2011). [CrossRef] [PubMed]
  8. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science317(5845), 1698–1702 (2007). [CrossRef] [PubMed]
  9. R. Merlin, “Metamaterials and the Landau-Lifshitz permeability argument: large permittivity begets high-frequency magnetism,” Proc. Natl. Acad. Sci. U.S.A.106(6), 1693–1698 (2009). [CrossRef] [PubMed]
  10. C. M. Soukoulis, M. Kafesaki, and E. N. Economou, “Negative index materials: new frontiers in optics,” Adv. Mater. (Deerfield Beach Fla.)18(15), 1941–1952 (2006). [CrossRef]
  11. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004). [CrossRef] [PubMed]
  12. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science326(5952), 550–553 (2009). [CrossRef] [PubMed]
  13. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970). [CrossRef]
  14. A. Ashkin and J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett.38(23), 1351–1354 (1977). [CrossRef]
  15. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science235(4795), 1517–1520 (1987). [CrossRef] [PubMed]
  16. K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev.37(1), 42–55 (2007). [CrossRef] [PubMed]
  17. D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 21–27 (2003). [CrossRef] [PubMed]
  18. F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics5(6), 318–321 (2011). [CrossRef] [PubMed]
  19. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys.3(7), 477–480 (2007). [CrossRef]
  20. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011). [CrossRef]
  21. R. Quidant and C. Girard, “Surface-plasmon-based optical manipulation,” Laser Photon. Rev.2(1-2), 47–57 (2008). [CrossRef]
  22. M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett.100(18), 186804 (2008). [CrossRef] [PubMed]
  23. G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett.96(23), 238101 (2006). [CrossRef] [PubMed]
  24. M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett.9(10), 3387–3391 (2009). [CrossRef] [PubMed]
  25. P. W. Barber and S. C. Hill, Lights Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).
  26. T. Sannomiya and C. Hafner, “Multiple multipole program modelling for nano plasmonic sensors,” J. Comput. Theor. Nanoscience7(8), 1587–1595 (2010). [CrossRef]
  27. L. Novotny, D. W. Pohl, and B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett.20(9), 970–972 (1995). [CrossRef] [PubMed]
  28. F. J. García de Abajo, “Multiple scattering of radiation in clusters of dielectrics,” Phys. Rev. B60(8), 6086–6102 (1999). [CrossRef]
  29. E. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985).
  30. R. Zhao, P. Tassin, T. Koschny, and C. M. Soukoulis, “Optical forces in nanowire pairs and metamaterials,” Opt. Express18(25), 25665–25676 (2010). [CrossRef] [PubMed]
  31. X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett.11(2), 321–328 (2011). [CrossRef] [PubMed]
  32. F. J. García de Abajo, “Momentum transfer to small particles by passing electron beams,” Phys. Rev. B70(11), 115422 (2004). [CrossRef]
  33. K. M. Hurst, C. B. Roberts, and W. R. Ashurst, “A gas-expanded liquid nanoparticle deposition technique for reducing the adhesion of silicon microstructures,” Nanotechnology20(18), 185303 (2009). [CrossRef] [PubMed]
  34. J. N. Israelachvili, Intermolecular and Surface Forces (Academic, London, 1992).
  35. A11 equal to 31⨉10−20 J; A22 equal to 6.5⨉10−20; A33 equal to 4⨉10−20.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited