OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 7 — Jun. 25, 2012

Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow

O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, I. I. Mokhun, S. G. Hanson, C. Yu. Zenkova, and A. V. Tyurin  »View Author Affiliations


Optics Express, Vol. 20, Issue 10, pp. 11351-11356 (2012)
http://dx.doi.org/10.1364/OE.20.011351


View Full Text Article

Enhanced HTML    Acrobat PDF (917 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Non-spherical dielectric microparticles were suspended in a water-filled cell and exposed to a coherent Gaussian light beam with controlled state of polarization. When the beam polarization is linear, the particles were trapped at certain off-axial position within the beam cross section. After switching to the right (left) circular polarization, the particles performed spinning motion in agreement with the angular momentum imparted by the field, but they were involved in an orbital rotation around the beam axis as well, which in previous works [Y. Zhao et al, Phys. Rev. Lett. 99, 073901 (2007)] was treated as evidence for the spin-to orbital angular momentum conversion. Since in our realization the moderate focusing of the beam excluded the possibility for such a conversion, we consider the observed particle behavior as a demonstration of the macroscopic “spin energy flow” predicted by the theory of inhomogeneously polarized paraxial beams [A. Bekshaev et al, J. Opt. 13, 053001 (2011)].

© 2012 OSA

OCIS Codes
(260.2160) Physical optics : Energy transfer
(260.5430) Physical optics : Polarization
(350.4990) Other areas of optics : Particles
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: March 26, 2012
Revised Manuscript: April 25, 2012
Manuscript Accepted: April 25, 2012
Published: May 2, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Citation
O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, I. I. Mokhun, S. G. Hanson, C. Yu. Zenkova, and A. V. Tyurin, "Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow," Opt. Express 20, 11351-11356 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-10-11351


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Allen and M. J. Padgett, “The Poynting vector in Laguerre–Gaussian beams and the interpretation of their angular momentum density,” Opt. Commun.184(1-4), 67–71 (2000). [CrossRef]
  2. M. V. Vasnetsov, V. N. Gorshkov, I. G. Marienko, and M. S. Soskin, “Wavefront motion in the vicinity of a phase dislocation: “optical vortex,” Opt. Spectrosc.88(2), 260–265 (2000). [CrossRef]
  3. A. Ya. Bekshaev and M. S. Soskin, “Rotational transformations and transverse energy flow in paraxial light beams: linear azimuthons,” Opt. Lett.31(14), 2199–2201 (2006). [CrossRef] [PubMed]
  4. A. Ya. Bekshaev and M. S. Soskin, “Transverse energy flows in vectorial fields of paraxial beams with singularities,” Opt. Commun.271(2), 332–348 (2007). [CrossRef]
  5. M. V. Berry, “Optical currents,” J. Opt. A, Pure Appl. Opt.11(9), 094001 (2009). [CrossRef]
  6. A. Bekshaev, K. Bliokh, and M. Soskin, “Internal flows and energy circulation in light beams,” J. Opt.13(5), 053001 (2011). [CrossRef]
  7. K. Y. Bliokh, M. A. Alonso, E. A. Ostrovskaya, and A. Aiello, “Angular momenta and spin-orbit interaction of non-paraxial light in free space,” Phys. Rev. A82(6), 063825 (2010). [CrossRef]
  8. M. Born and E. Wolf, Principles of Optics, 7th ed. (Pergamon, London, 2005).
  9. H. F. Schouten, T. D. Visser, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B Quantum Semiclassical Opt.6(5), S404–S409 (2004). [CrossRef]
  10. M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, S. C. Jeoung, Q. H. Park, P. C. M. Planken, and D. S. Kim, “Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors,” Opt. Express15(19), 11781–11789 (2007). [CrossRef] [PubMed]
  11. T. Zentgraf, J. Dorfmüller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, “Amplitude- and phase-resolved optical near fields of split-ring-resonator-based metamaterials,” Opt. Lett.33(8), 848–850 (2008). [CrossRef] [PubMed]
  12. A. Bitzer, H. Merbold, A. Thoman, T. Feurer, H. Helm, and M. Walther, “Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial,” Opt. Express17(5), 3826–3834 (2009). [CrossRef] [PubMed]
  13. N. Fang and X. Zhang, “Imaging properties of a metamaterial superlens,” Appl. Phys. Lett.82(2), 161–163 (2003). [CrossRef]
  14. M. Ware, W. E. Dibble, S. A. Glasgow, and J. Peatross, “Energy flow in angularly dispersive optical systems,” J. Opt. Soc. Am. B18(6), 839–845 (2001). [CrossRef]
  15. K. Volke-Sepulveda and R. A. Terborg, “Can diffraction provide quantitative information about energy flux in an optical vortex?” in Frontiers in Optics, OSA Technical Digest (Optical Society of America, 2011), paper JTuA38.
  16. C.-C. Chen and J. F. Whitaker, “An optically-interrogated microwave-Poynting-vector sensor using cadmium manganese telluride,” Opt. Express18(12), 12239–12248 (2010). [CrossRef] [PubMed]
  17. R. Khrobatin, I. Mokhun, and J. Viktorovskaya, “Potentiality of experimental analysis for characteristics of the Poynting vector components,” Ukr. J. Phys. Opt.9(3), 182–186 (2008). [CrossRef]
  18. O. V. Angelsky, M. P. Gorsky, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Y. Zenkova, “Investigation of optical currents in coherent and partially coherent vector fields,” Opt. Express19(2), 660–672 (2011). [CrossRef] [PubMed]
  19. M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophotonics2(1), 021875 (2008). [CrossRef]
  20. A. Ya. Bekshaev, O. V. Angelsky, S. V. Sviridova, and C. Yu. Zenkova, “Mechanical action of inhomogeneously polarized optical fields and detection of the internal energy flows,” Adv. Opt. Technol.2011, 723901 (2011). [CrossRef]
  21. A. T. O’Neil, I. MacVicar, L. Allen, and M. J. Padgett, “Intrinsic and extrinsic nature of the orbital angular momentum of a light beam,” Phys. Rev. Lett.88(5), 053601 (2002). [CrossRef] [PubMed]
  22. V. Garcés-Chavez, D. McGloin, M. D. Summers, A. Fernandez-Nieves, G. C. Spalding, G. Cristobal, and K. Dholakia, “The reconstruction of optical angular momentum after distortion in amplitude, phase and polarization,” J. Opt. A, Pure Appl. Opt.6(5), S235–S238 (2004). [CrossRef]
  23. Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett.99(7), 073901 (2007). [CrossRef] [PubMed]
  24. A. Ya. Bekshaev, “Spin angular momentum of inhomogeneous and transversely limited light beams,” Proc. SPIE6254, 625407, 625407-8 (2006). [CrossRef]
  25. A. Bekshaev and M. Vasnetsov, “Vortex flow of light: “Spin” and “orbital” flows in a circularly polarized paraxial beam,” in Twisted Photons. Applications of Light with Orbital Angular Momentum (Weinheim: Wiley-VCH, 2011), 13–24.
  26. T. A. Nieminen, A. B. Stilgoe, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Angular momentum of a strongly focused Gaussian beam,” J. Opt. A, Pure Appl. Opt.10(11), 115005 (2008). [CrossRef]
  27. A. Ya. Bekshaev, “A simple analytical model of the angular momentum transformation in strongly focused light beams,” Cent. Eur. J. Phys.8(6), 947–960 (2010). [CrossRef]
  28. O. V. Angelsky, A. Ya. Bekshaev, P. P. Maksimyak, A. P. Maksimyak, S. G. Hanson, and C. Yu. Zenkova, “Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams,” Opt. Express20(4), 3563–3571 (2012). [CrossRef] [PubMed]
  29. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical torque controlled by elliptical polarization,” Opt. Lett.23(1), 1–3 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (1904 KB)      QuickTime
» Media 2: MOV (1602 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited