OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 7 — Jun. 25, 2012

Visualizing breast cancer using the Twente photoacoustic mammoscope: What do we learn from twelve new patient measurements?

M. Heijblom, D. Piras, W. Xia, J.C.G. van Hespen, J.M. Klaase, F.M. van den Engh, T.G. van Leeuwen, W. Steenbergen, and S. Manohar  »View Author Affiliations


Optics Express, Vol. 20, Issue 11, pp. 11582-11597 (2012)
http://dx.doi.org/10.1364/OE.20.011582


View Full Text Article

Enhanced HTML    Acrobat PDF (5015 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We acquired images of breast malignancies using the Twente photoacoustic mammoscope (PAM), to obtain more information about the clinical feasibility and limitations of photoacoustic mammography. Results were compared with conventional imaging and histopathology. Ten technically acceptable measurements on patients with malignancies and two measurements on patients with cysts were performed. In the reconstructed volumes of all ten malignant lesions, a confined region with high contrast with respect to the background could be seen. In all malignant cases, the PA contrast of the abnormality was higher than the contrast on x-ray mammography. The PA contrast appeared to be independent of the mammographically estimated breast density and was absent in the case of cysts. Technological improvements to the instrument and further studies on less suspicious lesions are planned to further investigate the potential of PAM.

© 2012 OSA

OCIS Codes
(110.5120) Imaging systems : Photoacoustic imaging
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.1610) Medical optics and biotechnology : Clinical applications

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: January 18, 2012
Revised Manuscript: March 21, 2012
Manuscript Accepted: March 29, 2012
Published: May 7, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Citation
M. Heijblom, D. Piras, W. Xia, J.C.G. van Hespen, J.M. Klaase, F.M. van den Engh, T.G. van Leeuwen, W. Steenbergen, and S. Manohar, "Visualizing breast cancer using the Twente photoacoustic mammoscope: What do we learn from twelve new patient measurements?," Opt. Express 20, 11582-11597 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-11-11582


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. T. Tirona, R. Sehgal, and O. Ballester, “Prevention of breast cancer (part I): epidemiology, risk factors, and risk assessment tools,” Cancer Invest.28(7), 743–750 (2010). [CrossRef] [PubMed]
  2. W. A. Berg, L. Gutierrez, M. S. NessAiver, W. B. Carter, M. Bhargavan, R. S. Lewis, and O. B. Ioffe, “Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer,” Radiology233(3), 830–849 (2004). [CrossRef] [PubMed]
  3. G. Bergers and L. E. Benjamin, “Tumorigenesis and the angiogenic switch,” Nat. Rev. Cancer3(6), 401–410 (2003). [CrossRef] [PubMed]
  4. D. M. McDonald and P. L. Choyke, “Imaging of angiogenesis: from microscope to clinic,” Nat. Med.9(6), 713–725 (2003). [CrossRef] [PubMed]
  5. M. Heijblom, J. M. Klaase, F. M. van den Engh, T. G. van Leeuwen, W. Steenbergen, and S. Manohar, “Imaging tumor vascularization for detection and diagnosis of breast cancer,” Technol. Cancer Res. Treat.10(6), 607–623 (2011). [PubMed]
  6. T. Uematsu, S. Yuen, M. Kasami, and Y. Uchida, “Comparison of magnetic resonance imaging, multidetector row computed tomography, ultrasonography, and mammography for tumor extension of breast cancer,” Breast Cancer Res. Treat.112(3), 461–474 (2008). [CrossRef] [PubMed]
  7. S. M. van de Ven, S. G. Elias, A. J. Wiethoff, M. van der Voort, T. Nielsen, B. Brendel, C. Bontus, F. Uhlemann, R. Nachabe, R. Harbers, M. van Beek, L. Bakker, M. B. van der Mark, P. Luijten, and W. P. Mali, “Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging,” Eur. Radiol.19(5), 1108–1113 (2009). [CrossRef] [PubMed]
  8. A. Gibson and H. Dehghani, “Diffuse optical imaging,” Philos. Trans. R. Soc. London, Ser. A367, 3055–3072 (2009).
  9. B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. M. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes,” J. Biomed. Opt.9(3), 541–552 (2004). [CrossRef] [PubMed]
  10. Q. Zhu, P. U. Hegde, A. Ricci, M. Kane, E. B. Cronin, Y. Ardeshirpour, C. Xu, A. Aguirre, S. H. Kurtzman, P. J. Deckers, and S. H. Tannenbaum, “Early-stage invasive breast cancers: potential role of optical tomography with US localization in assisting diagnosis,” Radiology256(2), 367–378 (2010). [CrossRef] [PubMed]
  11. Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, “Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers,” Neoplasia7(3), 263–270 (2005). [CrossRef] [PubMed]
  12. B. A. Brooksby, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Near-infrared (NIR) tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities,” IEEE J. Sel. Top. Quantum Electron.9(2), 199–209 (2003). [CrossRef]
  13. Q. Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology258(1), 89–97 (2011). [CrossRef] [PubMed]
  14. P. Beard, “Biomedical photoacoustic imaging,” Interface Focus1(4), 602–631 (2011). [CrossRef]
  15. S. Mallidi, G. P. Luke, and S. Emelianov, “Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance,” Trends Biotechnol.29(5), 213–221 (2011). [CrossRef] [PubMed]
  16. Y. Q. Lao, D. Xing, S. H. Yang, and L. Z. Xiang, “Noninvasive photoacoustic imaging of the developing vasculature during early tumor growth,” Phys. Med. Biol.53(15), 4203–4212 (2008). [CrossRef] [PubMed]
  17. J. Yao and L. V. Wang, “Photoacoustic tomography: fundamentals, advances and prospects,” Contrast Media Mol. Imaging6(5), 332–345 (2011). [CrossRef] [PubMed]
  18. C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol.54(19), R59–R97 (2009). [CrossRef] [PubMed]
  19. S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt.14(2), 024007 (2009). [CrossRef] [PubMed]
  20. T. D. Khokhlova, I. M. Pelivanov, V. V. Kozhushko, A. N. Zharinov, V. S. Solomatin, and A. A. Karabutov, “Optoacoustic imaging of absorbing objects in a turbid medium: ultimate sensitivity and application to breast cancer diagnostics,” Appl. Opt.46(2), 262–272 (2007). [CrossRef] [PubMed]
  21. S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt.9(6), 1172–1181 (2004). [CrossRef] [PubMed]
  22. S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance,” Phys. Med. Biol.50(11), 2543–2557 (2005). [CrossRef] [PubMed]
  23. M. Pramanik, G. Ku, C. H. Li, and L. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys.35(6), 2218–2223 (2008). [CrossRef] [PubMed]
  24. J. Jose, S. Manohar, R. G. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “Imaging of tumor vasculature using Twente photoacoustic systems,” J. Biophotonics2(12), 701–717 (2009). [CrossRef] [PubMed]
  25. R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys.37(11), 6096–6100 (2010). [CrossRef] [PubMed]
  26. Z. Xie, X. Wang, R. F. Morris, F. R. Padilla, G. L. Lecarpentier, and P. L. Carson, “Photoacoustic imaging for deep targets in the breast using a multichannel 2D array transducer,” in Photonics West - Photons Plus Ultrasound: Imaging and Sensing 2011, A. Oraevsky, and L. Wang, eds. (SPIE, San-Francisco, 2011), 789907–789901: 789007–789906.
  27. S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, and T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express15(19), 12277–12285 (2007). [CrossRef] [PubMed]
  28. D. Piras, W. Xia, W. Steenbergen, T. G. Van Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the Twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quantum Electron.16(4), 730–739 (2010). [CrossRef]
  29. “The ACR breast imaging reporting and data system (BIRADS),” (American College of Radiology 2003), www.acr.org (2011).
  30. M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.71(1), 016706 (2005). [CrossRef] [PubMed]
  31. T. D. Khokhlova, I. M. Pelivanov, and A. A. Karabutov, “Optoacoustic tomography utilizing focused transducers: the resolution study,” Appl. Phys. Lett.92(2), 024105 (2008). [CrossRef]
  32. Y. Xu and L. V. Wang, “Effects of acoustic heterogeneity in breast thermoacoustic tomography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control50(9), 1134–1146 (2003). [CrossRef] [PubMed]
  33. C. Kuhl, “The current status of breast MR imaging. Part I. Choice of technique, image interpretation, diagnostic accuracy, and transfer to clinical practice,” Radiology244(2), 356–378 (2007). [CrossRef] [PubMed]
  34. E. P. Friedman, M. A. Hall-Craggs, H. Mumtaz, and A. Schneidau, “Breast MR and the appearance of the normal and abnormal nipple,” Clin. Radiol.52(11), 854–861 (1997). [CrossRef] [PubMed]
  35. O. Sarica, E. Zeybek, and E. Ozturk, “Evaluation of nipple-areola complex with ultrasonography and magnetic resonance imaging,” J. Comput. Assist. Tomogr.34(4), 575–586 (2010). [CrossRef] [PubMed]
  36. P. V. van Deventer, “The blood supply to the nipple-areola complex of the human mammary gland,” Aesthetic Plast. Surg.28(6), 393–398 (2004). [CrossRef] [PubMed]
  37. S. Ciatto, N. Houssami, A. Apruzzese, E. Bassetti, B. Brancato, F. Carozzi, S. Catarzi, M. P. Lamberini, G. Marcelli, R. Pellizzoni, B. Pesce, G. Risso, F. Russo, and A. Scorsolini, “Categorizing breast mammographic density: intra- and interobserver reproducibility of BI-RADS density categories,” Breast14(4), 269–275 (2005). [CrossRef] [PubMed]
  38. P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt.14(5), 054030 (2009). [CrossRef] [PubMed]
  39. H. E. Daldrup-Link, G. H. Simon, and R. C. Brasch, “Imaging of tumor angiogenesis: current approaches and future prospects,” Curr. Pharm. Des.12(21), 2661–2672 (2006). [CrossRef] [PubMed]
  40. P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010). [CrossRef] [PubMed]
  41. J. Holash, S. J. Wiegand, and G. D. Yancopoulos, “New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF,” Oncogene18(38), 5356–5362 (1999). [CrossRef] [PubMed]
  42. P. Taroni, A. Pifferi, E. Salvagnini, L. Spinelli, A. Torricelli, and R. Cubeddu, “Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification,” Opt. Express17(18), 15932–15946 (2009). [CrossRef] [PubMed]
  43. R. L. van Veen, H. J. Sterenborg, A. Pifferi, A. Torricelli, E. Chikoidze, and R. Cubeddu, “Determination of visible near-IR absorption coefficients of mammalian fat using time- and spatially resolved diffuse reflectance and transmission spectroscopy,” J. Biomed. Opt.10(5), 054004 (2005). [CrossRef] [PubMed]
  44. S. Fantini and A. Sassaroli, “Near-infrared optical mammography for breast cancer detection with intrinsic contrast,” Ann. Biomed. Eng.40(2), 398–407 (2012). [CrossRef] [PubMed]
  45. A. Cerussi, N. Shah, D. Hsiang, A. Durkin, J. Butler, and B. J. Tromberg, “In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy,” J. Biomed. Opt.11(4), 044005 (2006). [CrossRef] [PubMed]
  46. R. Nachabé, D. J. Evers, B. H. W. Hendriks, G. W. Lucassen, M. van der Voort, E. J. Rutgers, M. J. Peeters, J. A. Van der Hage, H. S. Oldenburg, J. Wesseling, and T. J. M. Ruers, “Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: comparison of classification methods,” J. Biomed. Opt.16(8), 087010 (2011). [CrossRef] [PubMed]
  47. J. Wang, P. L. Torng, T. P. Liu, K. L. Chen, and T. T. Shih, “Proton MR spectroscopy in normal breasts between pre- and postmenopausal women: a preliminary study,” AJR Am. J. Roentgenol.190(2), 505–510 (2008). [CrossRef] [PubMed]
  48. A. Buehler, A. Rosenthal, T. Jetzfellner, A. Dima, D. Razansky, and V. Ntziachristos, “Model-based optoacoustic inversions with incomplete projection data,” Med. Phys.38(3), 1694–1704 (2011). [CrossRef] [PubMed]
  49. Y. Xu, D. Z. Feng, and L. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography--I: Planar geometry,” IEEE Trans. Med. Imaging21(7), 823–828 (2002). [CrossRef] [PubMed]
  50. B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt.45(8), 1866–1875 (2006). [CrossRef] [PubMed]
  51. Z. Yuan and H. B. Jiang, “Quantitative photoacoustic tomography: recovery of optical absorption coefficient maps of heterogeneous media,” Appl. Phys. Lett.88(23), 231101 (2006). [CrossRef]
  52. N. R. Jagannathan, “Breast tissue characterization by in vivo Magnetic Resonance Spectroscopy,” Spectroscopy25, 251–260 (2011).
  53. A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Spectroscopy enhances the information content of optical mammography,” J. Biomed. Opt.7(1), 60–71 (2002). [CrossRef] [PubMed]
  54. V. Ntziachristos and D. Razansky, “Molecular imaging by means of multispectral optoacoustic tomography (MSOT),” Chem. Rev.110(5), 2783–2794 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited