OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 7 — Jun. 25, 2012

Using fixed fiduciary markers for stage drift correction

Sang Hak Lee, Murat Baday, Marco Tjioe, Paul D. Simonson, Ruobing Zhang, En Cai, and Paul R. Selvin  »View Author Affiliations


Optics Express, Vol. 20, Issue 11, pp. 12177-12183 (2012)
http://dx.doi.org/10.1364/OE.20.012177


View Full Text Article

Enhanced HTML    Acrobat PDF (952 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To measure nanometric features with super-resolution requires that the stage, which holds the sample, be stable to nanometric precision. Herein we introduce a new method that uses conventional equipment, is low cost, and does not require intensive computation. Fiduciary markers of approximately 1 µm x 1 µm x 1 µm in x, y, and z dimensions are placed at regular intervals on the coverslip. These fiduciary markers are easy to put down, are completely stationary with respect to the coverslip, are bio-compatible, and do not interfere with fluorescence or intensity measurements. As the coverslip undergoes drift (or is purposely moved), the x-y center of the fiduciary markers can be readily tracked to 1 nanometer using a Gaussian fit. By focusing the light slightly out-of-focus, the z-axis can also be tracked to < 5 nm for dry samples and <17 nm for wet samples by looking at the diffraction rings. The process of tracking the fiduciary markers does not interfere with visible fluorescence because an infrared light emitting diode (IR-LED) (690 and 850 nm) is used, and the IR-light is separately detected using an inexpensive camera. The resulting motion of the coverslip can then be corrected for, either after-the-fact, or by using active stabilizers, to correct for the motion. We applied this method to watch kinesin walking with ≈8 nm steps.

© 2012 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:
Microscopy

History
Original Manuscript: March 12, 2012
Revised Manuscript: May 7, 2012
Manuscript Accepted: May 7, 2012
Published: May 14, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Sang Hak Lee, Murat Baday, Marco Tjioe, Paul D. Simonson, Ruobing Zhang, En Cai, and Paul R. Selvin, "Using fixed fiduciary markers for stage drift correction," Opt. Express 20, 12177-12183 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-11-12177


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Toprak and P. R. Selvin, “New fluorescent tools for watching nanometer-scale conformational changes of single molecules,” Annu. Rev. Biophys. Biomol. Struct.36(1), 349–369 (2007). [CrossRef] [PubMed]
  2. B. Huang, M. Bates, and X. W. Zhuang, “Super-Resolution Fluorescence Microscopy,” Annu. Rev. Biochem.78(1), 993–1016 (2009). [CrossRef] [PubMed]
  3. M. P. Gordon, T. Ha, and P. R. Selvin, “Single-molecule high-resolution imaging with photobleaching,” Proc. Natl. Acad. Sci. U.S.A.101(17), 6462–6465 (2004). [CrossRef] [PubMed]
  4. R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise Nanometer Localization Analysis for Individual Fluorescent Probes,” Biophys. J.82(5), 2775–2783 (2002). [CrossRef] [PubMed]
  5. X. H. Qu, D. Wu, L. Mets, and N. F. Scherer, “Nanometer-localized multiple single-molecule fluorescence microscopy,” Proc. Natl. Acad. Sci. U.S.A.101(31), 11298–11303 (2004). [CrossRef] [PubMed]
  6. T. D. Lacoste, X. Michalet, F. Pinaud, D. S. Chemla, A. P. Alivisatos, and S. Weiss, “Ultrahigh-resolution multicolor colocalization of single fluorescent probes,” Proc. Natl. Acad. Sci. U.S.A.97(17), 9461–9466 (2000). [CrossRef] [PubMed]
  7. L. S. Churchman, Z. Okten, R. S. Rock, J. F. Dawson, and J. A. Spudich, “Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time,” Proc. Natl. Acad. Sci. U.S.A.102(5), 1419–1423 (2005). [CrossRef] [PubMed]
  8. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  9. A. R. Carter, G. M. King, T. A. Ulrich, W. Halsey, D. Alchenberger, and T. T. Perkins, “Stabilization of an optical microscope to 0.1 nm in three dimensions,” Appl. Opt.46(3), 421–427 (2007). [CrossRef] [PubMed]
  10. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006). [CrossRef] [PubMed]
  11. P. D. Simonson, E. Rothenberg, and P. R. Selvin, “Single-Molecule-Based Super-Resolution Images in the Presence of Multiple Fluorophores,” Nano Lett.11(11), 5090–5096 (2011). [CrossRef] [PubMed]
  12. D. T. Burnette, P. Sengupta, Y. H. Dai, J. Lippincott-Schwartz, and B. Kachar, “Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules,” Proc. Natl. Acad. Sci. U.S.A.108(52), 21081–21086 (2011). [CrossRef] [PubMed]
  13. S. W. Hell, “Far-field optical nanoscopy,” Science316(5828), 1153–1158 (2007). [CrossRef] [PubMed]
  14. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A.102(37), 13081–13086 (2005). [CrossRef] [PubMed]
  15. A. R. Wade and F. W. Fitzke, “A fast, robust pattern recognition system for low light level image registration and its application to retinal imaging,” Opt. Express3(5), 190–197 (1998). [CrossRef] [PubMed]
  16. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett.33(2), 156–158 (2008). [CrossRef] [PubMed]
  17. M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006). [CrossRef] [PubMed]
  18. R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer, and M. M. Mhlanga, “QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ,” Nat. Methods7(5), 339–340 (2010). [CrossRef] [PubMed]
  19. L. Nugent-Glandorf and T. T. Perkins, “Measuring 0.1-nm motion in 1 ms in an optical microscope with differential back-focal-plane detection,” Opt. Lett.29(22), 2611–2613 (2004). [CrossRef] [PubMed]
  20. M. J. Mlodzianoski, J. M. Schreiner, S. P. Callahan, K. Smolková, A. Dlasková, J. Santorová, P. Ježek, and J. Bewersdorf, “Sample drift correction in 3D fluorescence photoactivation localization microscopy,” Opt. Express19(16), 15009–15019 (2011). [CrossRef] [PubMed]
  21. D. Qin, Y. N. Xia, and G. M. Whitesides, “Soft lithography for micro- and nanoscale patterning,” Nat. Protoc.5(3), 491–502 (2010). [CrossRef] [PubMed]
  22. M. Speidel, A. Jonás, and E. L. Florin, “Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging,” Opt. Lett.28(2), 69–71 (2003). [CrossRef] [PubMed]
  23. E. Toprak, H. Balci, B. H. Blehm, and P. R. Selvin, “Three-dimensional particle tracking via bifocal imaging,” Nano Lett.7(7), 2043–2045 (2007). [CrossRef] [PubMed]
  24. S. F. Gibson and F. Lanni, “Diffraction by a Circular Aperture as a model for three-dimensional optical microscopy,” J. Opt. Soc. Am. A6(9), 1357–1367 (1989). [CrossRef] [PubMed]
  25. A. Yildiz, M. Tomishige, R. D. Vale, and P. R. Selvin, “Kinesin walks hand-over-hand,” Science303(5658), 676–678 (2004). [CrossRef] [PubMed]
  26. E. Toprak, A. Yildiz, M. T. Hoffman, S. S. Rosenfeld, and P. R. Selvin, “Why kinesin is so processive,” Proc. Natl. Acad. Sci. U.S.A.106(31), 12717–12722 (2009). [CrossRef] [PubMed]
  27. S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, “Bead Movement by Single Kinesin Molecules Studied with Optical Tweezers,” Nature348(6299), 348–352 (1990). [CrossRef] [PubMed]
  28. K. M. Zia, M. Zuber, I. A. Bhatti, M. Barikani, and M. A. Sheikh, “Evaluation of biocompatibility and mechanical behavior of polyurethane elastomers based on chitin/1,4-butane diol blends,” Int. J. Biol. Macromol.44(1), 18–22 (2009). [CrossRef] [PubMed]
  29. M. Howarth, K. Takao, Y. Hayashi, and A. Y. Ting, “Targeting quantum dots to surface proteins in living cells with biotin ligase,” Proc. Natl. Acad. Sci. U.S.A.102(21), 7583–7588 (2005). [CrossRef] [PubMed]
  30. M. Howarth, W. H. Liu, S. Puthenveetil, Y. Zheng, L. F. Marshall, M. M. Schmidt, K. D. Wittrup, M. G. Bawendi, and A. Y. Ting, “Monovalent, reduced-size quantum dots for imaging receptors on living cells,” Nat. Methods5(5), 397–399 (2008). [CrossRef] [PubMed]
  31. F. Wang, D. Banerjee, Y. S. Liu, X. Y. Chen, and X. G. Liu, “Upconversion nanoparticles in biological labeling, imaging, and therapy,” Analyst (Lond.)135(8), 1839–1854 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited