OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 7 — Jun. 25, 2012

Two-photon microscopy using an Yb3+-doped fiber laser with variable pulse widths

Dong Uk Kim, Hoseong Song, Woosub Song, Hyuk-Sang Kwon, Miae Sung, and Dug Young Kim  »View Author Affiliations

Optics Express, Vol. 20, Issue 11, pp. 12341-12349 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1081 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Most of the two-photon fluorescence microscopes are based on femtosecond Ti:Sapphire laser sources near the 800 nm wavelength. Here, we introduce a new confocal two-photon microscope system using a mode-locked Yb3+-doped fiber laser. The mode-locked fiber laser produces 13 ps pulses with large positive chirping at a repetition rate of 36 MHz with an average power of 80 mW. By using an external grating pair pulse compressor, the pulse width and the frequency chirping of the laser output are controlled for optimum two-photon excitation. For a given objective lens, the optimum condition was obtained by monitoring the two-photon-induced-photocurrent in a GaAsP photodiode at the sample position. The performance of this pulse width optimized two-photon microscope system was demonstrated by imaging Vybrant DiI-stained dorsal root ganglion cells in 2 and 3 dimensions.

© 2012 OSA

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.6900) Microscopy : Three-dimensional microscopy
(190.4180) Nonlinear optics : Multiphoton processes

ToC Category:

Original Manuscript: March 21, 2012
Revised Manuscript: May 10, 2012
Manuscript Accepted: May 10, 2012
Published: May 16, 2012

Virtual Issues
Vol. 7, Iss. 7 Virtual Journal for Biomedical Optics

Dong Uk Kim, Hoseong Song, Woosub Song, Hyuk-Sang Kwon, Miae Sung, and Dug Young Kim, "Two-photon microscopy using an Yb3+-doped fiber laser with variable pulse widths," Opt. Express 20, 12341-12349 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990). [CrossRef] [PubMed]
  2. A. Diaspro, G. Chirico, F. Federici, F. Cannone, S. Beretta, and M. Robello, “Two-photon microscopy and spectroscopy based on a compact confocal scanning head,” J. Biomed. Opt.6(3), 300–310 (2001). [CrossRef] [PubMed]
  3. M. Sridhar, S. Basu, V. L. Scranton, and P. J. Campagnola, “Construction of a laser scanning microscope for multiphoton excited optical fabrication,” Rev. Sci. Instrum.74(7), 3474–3477 (2003). [CrossRef]
  4. S. P. Tai, M. C. Chan, T. H. Tsai, S. H. Guol, L. J. Chen, C. K. Sun, and S-, “Two-photon fluorescence microscope with a hollow-core photonic crystal fiber,” Opt. Express12(25), 6122–6128 (2004). [CrossRef] [PubMed]
  5. J. J. Mancuso, A. M. Larson, T. G. Wensel, and P. Saggau, “Multiphoton adaptation of a commercial low-cost confocal microscope for live tissue imaging,” J. Biomed. Opt.14(3), 034048 (2009). [CrossRef] [PubMed]
  6. H. Yokoyama, H. Guo, T. Yoda, K. Takashima, K. Sato, H. Taniguchi, and H. Ito, “Two-photon bioimaging with picosecond optical pulses from a semiconductor laser,” Opt. Express14(8), 3467–3471 (2006). [CrossRef] [PubMed]
  7. K. Taira, T. Hashimoto, and H. Yokoyama, “Two-photon fluorescence imaging with a pulse source based on a 980-nm gain-switched laser diode,” Opt. Express15(5), 2454–2458 (2007). [CrossRef] [PubMed]
  8. J. R. Unruh, E. S. Price, R. G. Molla, R. Hui, and C. K. Johnson, “Evaluation of a femtosecond fiber laser for two-photon fluorescence correlation spectroscopy,” Microsc. Res. Tech.69(11), 891–893 (2006). [CrossRef] [PubMed]
  9. J. R. Unruh, E. S. Price, R. G. Molla, L. Stehno-Bittel, C. K. Johnson, and R. Hui, “Two-photon microscopy with wavelength switchable fiber laser excitation,” Opt. Express14(21), 9825–9831 (2006). [CrossRef] [PubMed]
  10. S. Tang, J. Liu, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt.14(3), 030508 (2009). [CrossRef] [PubMed]
  11. E. Büttner, V. Andresen, I. Rimke, and P. Friedl, “Infrared multiphoton microscopy beyond 1 micron: system design and biomedical applications,” Proc. SPIE6630, 66300H1– 66300H-8 (2007)
  12. G. Lenz, K. Tamura, H. A. Haus, and E. P. Ippen, “All-solid-state femtosecond source at 155 µm,” Opt. Lett.20(11), 1289–1291 (1995). [CrossRef] [PubMed]
  13. A. Chong, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett.32(16), 2408–2410 (2007). [CrossRef] [PubMed]
  14. M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmidt, “Mode locking with cross-phase and self-phase modulation,” Opt. Lett.16(7), 502–504 (1991). [CrossRef] [PubMed]
  15. P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron.24(2), 398–403 (1988). [CrossRef]
  16. R. L. Fork, C. H. Cruz, P. C. Becker, and C. V. Shank, “Compression of optical pulses to six femtoseconds by using cubic phase compensation,” Opt. Lett.12(7), 483–485 (1987). [CrossRef] [PubMed]
  17. http://www.microscopyu.com/articles/optics/cfintro.html .
  18. J. B. Pawley, Handbook of Biological Confocal Microscopy (Springer, 2006), Chap. 9.
  19. D. U. Kim, S. Moon, H. Song, H.-S. Kwon, and D. Y. Kim, “Masked illumination scheme for a galvanometer scanning high-speed confocal fluorescence microscope,” Scanning33(6), 455–462 (2011). [CrossRef] [PubMed]
  20. A. Diaspro, Confocal and Two-photon Microscopy Foundations, Applications, and Advances (Wiely-Liss, 2002), Chap. 8.
  21. G. Koren, “Two-photon photoconductivity phenomena in semiconductors and insulators,” Phys. Rev. B11(2), 802–821 (1975). [CrossRef]
  22. J. K. Ranka, A. L. Gaeta, A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett.22(17), 1344–1346 (1997). [CrossRef] [PubMed]
  23. F. Träger, Handbook of Lasers and Optics (Springer, 2007), Chap. 12.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited