OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 8 — Aug. 2, 2012

Polarization-resolved second harmonic generation microscopy with a four-channel Stokes-polarimeter

Nirmal Mazumder, Jianjun Qiu, Matthew R. Foreman, Carlos Macías Romero, Chih-Wei Hu, Han-Ruei Tsai, Peter Török, and Fu-Jen Kao  »View Author Affiliations


Optics Express, Vol. 20, Issue 13, pp. 14090-14099 (2012)
http://dx.doi.org/10.1364/OE.20.014090


View Full Text Article

Enhanced HTML    Acrobat PDF (562 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We developed a four-channel photon counting based Stokes-polarimeter for spatial characterization of polarization effects in second harmonic generation (SHG). We have implemented a calibration technique allowing quantitative measurement of polarization parameters, such as the degree of polarization (DOP), degree of linear polarization (DOLP), degree of circular polarization (DOCP), as well as anisotropy from the acquired Stokes parameters. The technique is used as contrast mechanism to characterize the polarization properties from two potassium dihydrogen phosphate (KDP) micro-crystals and collagen type-I in SHG microscopy.

© 2012 OSA

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(320.0320) Ultrafast optics : Ultrafast optics
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Microscopy

History
Original Manuscript: April 27, 2012
Revised Manuscript: June 1, 2012
Manuscript Accepted: June 1, 2012
Published: June 11, 2012

Virtual Issues
Vol. 7, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Nirmal Mazumder, Jianjun Qiu, Matthew R. Foreman, Carlos Macías Romero, Chih-Wei Hu, Han-Ruei Tsai, Peter Török, and Fu-Jen Kao, "Polarization-resolved second harmonic generation microscopy with a four-channel Stokes-polarimeter," Opt. Express 20, 14090-14099 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-13-14090


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. J. Campagnola, L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003). [CrossRef] [PubMed]
  2. A. D. Slepkov, A. Ridsdale, H. N. Wan, M. H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F. J. Kao, A. Stolow, “Forward-collected simultaneous fluorescence lifetime imaging and coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 16(2), 021103 (2011). [CrossRef] [PubMed]
  3. E. Bélanger, S. Bégin, S. Laffray, Y. De Koninck, R. Vallée, D. Côté, “Quantitative myelin imaging with coherent anti-Stokes Raman scattering microscopy: alleviating the excitation polarization dependence with circularly polarized laser beams,” Opt. Express 17(21), 18419–18432 (2009). [CrossRef] [PubMed]
  4. F. Lu, W. Zheng, Z. Huang, “Heterodyne polarization coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 92(12), 123901 (2008). [CrossRef]
  5. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003). [CrossRef] [PubMed]
  6. D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006). [CrossRef] [PubMed]
  7. R. W. Boyd, Nonlinear Optics(Academic press, San Diego, CA, 1992).
  8. S. Psilodimitrakopoulos, S. I. C. O. Santos, I. Amat-Roldan, A. K. N. Thayil, D. Artigas, P. Loza-Alvarez, “In vivo, pixel-resolution mapping of thick filaments’ orientation in nonfibrilar muscle using polarization-sensitive second harmonic generation microscopy,” J. Biomed. Opt. 14(1), 014001 (2009). [CrossRef] [PubMed]
  9. R. Gauderon, P. B. Lukins, C. J. R. Sheppard, “Three-dimensional second-harmonic generation imaging with femtosecond laser pulses,” Opt. Lett. 23(15), 1209–1211 (1998). [CrossRef] [PubMed]
  10. M. Strupler, A. M. Pena, M. Hernest, P. L. Tharaux, J. L. Martin, E. Beaurepaire, M. C. Schanne-Klein, “Second harmonic imaging and scoring of collagen in fibrotic tissues,” Opt. Express 15(7), 4054–4065 (2007). [CrossRef] [PubMed]
  11. Y. Sun, W. L. Chen, S. J. Lin, S. H. Jee, Y. F. Chen, L. C. Lin, P. T. C. So, C. Y. Dong, “Investigating mechanisms of collagen thermal denaturation by high resolution second-harmonic generation imaging,” Biophys. J. 91(7), 2620–2625 (2006). [CrossRef] [PubMed]
  12. V. Da Costa, R. Wei, R. Lim, C. H. Sun, J. J. Brown, B. J. F. Wong, “Nondestructive imaging of live human keloid and facial tissue using multiphoton microscopy,” Arch. Facial Plast. Surg. 10(1), 38–43 (2008). [CrossRef] [PubMed]
  13. M. Han, G. Giese, J. F. Bille, “Second harmonic generation imaging of collagen fibrils in cornea and sclera,” Opt. Express 13(15), 5791–5797 (2005). [CrossRef] [PubMed]
  14. P. Matteini, F. Ratto, F. Rossi, R. Cicchi, C. Stringari, D. Kapsokalyvas, F. S. Pavone, R. Pini, “Photothermally-induced disordered patterns of corneal collagen revealed by SHG imaging,” Opt. Express 17(6), 4868–4878 (2009). [CrossRef] [PubMed]
  15. S. V. Plotnikov, A. C. Millard, P. J. Campagnola, W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006). [CrossRef] [PubMed]
  16. P. J. Campagnola, “Second harmonic generation imaging microscopy: applications to diseases diagnostics,” Anal. Chem. 83(9), 3224–3231 (2011). [PubMed]
  17. X. Chen, O. Nadiarynkh, S. Plotnikov, P. J. Campagnola, “Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure,” Nat. Protoc. 7(4), 654–669 (2012). [CrossRef] [PubMed]
  18. E. Hecht, Optics, 4th ed. (Addison Wesley, 2002).
  19. M. J. Walker, “Matrix calculus and the Stokes parameters of polarized radiation,” Am. J. Phys. 22(4), 170–174 (1954). [CrossRef]
  20. W. Bickel, W. Bailey, “Stokes Vectors, Mueller matrices and polarized scattered light,” Am. J. Phys. 53(5), 468–478 (1985). [CrossRef]
  21. M. R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18(10), 10200–10208 (2010). [CrossRef] [PubMed]
  22. N. Ghosh, M. F. G. Wood, I. A. Vitkin, “Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissue,” Opt. Commun. 283(6), 1200–1208 (2010). [CrossRef]
  23. S. Y. Lu, R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13(5), 1106–1113 (1996). [CrossRef]
  24. E. Compain, S. Poirier, B. Drevillon, “General and self-consistent method for the calibration of polarization modulators, polarimeters, and mueller-matrix ellipsometers,” Appl. Opt. 38(16), 3490–3502 (1999). [CrossRef] [PubMed]
  25. I. Berezhnyy, A. Dogariu, “Time-resolved Mueller matrix imaging polarimetry,” Opt. Express 12(19), 4635–4649 (2004). [CrossRef] [PubMed]
  26. L. M. S. Aas, P. G. Ellingsen, M. Kildemo, “Near infra-red Mueller matrix imaging system and application to retardance imaging of strain,” Thin Solid Films 519(9), 2737–2741 (2011). [CrossRef]
  27. P. Schön, F. Munhoz, A. Gasecka, S. Brustlein, S. Brasselet, “Polarization distortion effects in polarimetric two-photon microscopy,” Opt. Express 16(25), 20891–20901 (2008). [CrossRef] [PubMed]
  28. E. Y. S. Yew, C. R. J. Sheppard, “Effects of axial field components on second harmonic generation microscopy,” Opt. Express 14(3), 1167–1174 (2006). [CrossRef] [PubMed]
  29. P. Schön, M. Behrndt, D. Ait-Belkacem, H. Rigneault, S. Brasselet, “Polarization and phase pulse shaping applied to structural contrast in nonlinear microscopy imaging,” Phys. Rev. A 81(1), 013809 (2010). [CrossRef]
  30. R. M. A. Azzam, “Arrangement of four photodetectors for measuring the state of polarization of light,” Opt. Lett. 10(7), 309–311 (1985). [CrossRef] [PubMed]
  31. S. Brasselet, D. Aït-Belkacem, A. Gasecka, F. Munhoz, S. Brustlein, S. Brasselet, “Influence of birefringence on polarization resolved nonlinear microscopy and collagen SHG structural imaging,” Opt. Express 18(14), 14859–14870 (2010). [CrossRef] [PubMed]
  32. L. Fu, M. Gu, “Polarization anisotropy in fiber-optic second harmonic generation microscopy,” Opt. Express 16(7), 5000–5006 (2008). [CrossRef] [PubMed]
  33. C. W. Sun, C. C. Yang, Y. W. Kiang, “Optical imaging based on time-resolved Stokes vectors in filamentous tissues,” Appl. Opt. 42(4), 750–754 (2003). [CrossRef] [PubMed]
  34. J. G. Webster, “Polarization measurement,” in The Measurement, Instrumentation and Sensors Handbook, (CRC Press, 1998), Chap. 60.
  35. M. Wolman, F. H. Kasten, “Polarized light microscopy in the study of the molecular structure of collagen and reticulin,” Histochemistry 85(1), 41–49 (1986). [CrossRef] [PubMed]
  36. M. R. Foreman, C. Macias Romero, P. Török, “A priori information and optimisation in polarimetry,” Opt. Express 16(19), 15212–15227 (2008). [CrossRef] [PubMed]
  37. J. Qiu, Modern Optics Laboratory, National Yang-Ming University, 155 Li-Nong St, Taipei 112, Taiwan and N. Mazumder are preparing a manuscript to be called “Stokes vector formalism based nonlinear optical microscopy.”
  38. S. W. Chu, S. Y. Chen, G. W. Chern, T. H. Tsai, Y. C. Chen, B. L. Lin, C. K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004). [CrossRef] [PubMed]
  39. R. M. Williams, W. R. Zipfel, W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005). [CrossRef] [PubMed]
  40. E. W. Meijer, E. E. Havinga, G. L. J. A. Rikken, “Second-harmonic generation in centrosymmetric crystals of chiral molecules,” Phys. Rev. Lett. 65(1), 37–39 (1990). [CrossRef] [PubMed]
  41. J. C. Mansfield, C. P. Winlove, J. Moger, S. J. Matcher, “Collagen fiber arrangement in normal and diseased cartilage studied by polarization sensitive nonlinear microscopy,” J. Biomed. Opt. 13(4), 044020 (2008). [CrossRef] [PubMed]
  42. A. Periasamy, D. H. Burns, D. N. Holdren, G. H. Pollack, K. Trombitás, “A-band shortening in single fibers of frog skeletal muscle,” Biophys. J. 57(4), 815–828 (1990). [CrossRef] [PubMed]
  43. W. Min, S. Lu, S. Chong, R. Roy, G. R. Holtom, X. S. Xie, “Imaging chromophores with undetectable fluorescence by stimulated emission microscopy,” Nature 461(7267), 1105–1109 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited