OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 9 — Aug. 28, 2012

DNA optical nanofibers: preparation and characterization

Weihong Long, Weiwen Zou, Xinwan Li, and Jianping Chen  »View Author Affiliations


Optics Express, Vol. 20, Issue 16, pp. 18188-18193 (2012)
http://dx.doi.org/10.1364/OE.20.018188


View Full Text Article

Enhanced HTML    Acrobat PDF (1510 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the preparation and characterization of DNA optical nanofibers. The prepared DNA optical nanofibers with strong strength and high flexibility are tested. Coupled with silica fiber tapers, their optical characteristics including light transmission performance, group delay and chromatic dispersion are experimentally investigated. The visible and near infrared light waveguiding properties of the DNA optical nanofibers with and without R6G doping are also studied. It is expected that the DNA optical nanofibers may be potential for building the miniaturized biomedical photonic devices.

© 2012 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: May 24, 2012
Revised Manuscript: July 2, 2012
Manuscript Accepted: July 11, 2012
Published: July 24, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Weihong Long, Weiwen Zou, Xinwan Li, and Jianping Chen, "DNA optical nanofibers: preparation and characterization," Opt. Express 20, 18188-18193 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-16-18188


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Gajria, T. Neumann, and M. Tirrell, “Self-assembly and applications of nucleic acid solid-state films,” Wiley Interdiscip Rev Nanomed Nanobiotechnol3, 479–500 (2011). [PubMed]
  2. A. J. Steckl, “DNA - a new material for photonics?” Nat. Photonics1(1), 3–5 (2007). [CrossRef]
  3. J. A. Hagen, W. X. Li, H. Spaeth, J. G. Grote, and A. J. Steckl, “Molecular beam deposition of DNA nanometer films,” Nano Lett.7(1), 133–137 (2007). [CrossRef] [PubMed]
  4. Y. Ner, J. G. Grote, J. A. Stuart, and G. A. Sotzing, “White luminescence from multiple-dye-doped electrospun DNA nanofibers by fluorescence resonance energy transfer,” Angew. Chem. Int. Ed. Engl.48(28), 5134–5138 (2009). [CrossRef] [PubMed]
  5. L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, “Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)-cationic surfactant complexes: large-scale preparation and optical and thermal properties,” Chem. Mater.13(4), 1273–1281 (2001). [CrossRef]
  6. J. G. Grote, J. A. Hagen, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. Heckman, C. Zhang, W. H. Steier, A. K. Y. Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, “Investigation of polymers and marine-derived DNA in optoelectronics,” J. Phys. Chem. B108(25), 8584–8591 (2004). [CrossRef]
  7. J. Mysliwiec, A. Kochalska, and A. Miniewicz, “Biopolymer-based material used in optical image correlation,” Appl. Opt.47(11), 1902–1906 (2008). [CrossRef] [PubMed]
  8. J. Zhou, Z. Y. Wang, X. Yang, C. Y. Wong, and E. Y. Pun, “Fabrication of low-loss, single-mode-channel waveguide with DNA-CTMA biopolymer by multistep processing technology,” Opt. Lett.35(10), 1512–1514 (2010). [CrossRef] [PubMed]
  9. J. K. Hannestad, P. Sandin, and B. Albinsson, “Self-assembled DNA photonic wire for long-range energy transfer,” J. Am. Chem. Soc.130(47), 15889–15895 (2008). [CrossRef] [PubMed]
  10. H. Nakao, T. Taguchi, H. Shiigi, and K. Miki, “Simple one-step growth and parallel alignment of DNA nanofibers via solvent vapor-induced buildup,” Chem. Commun. (Camb.)14(14), 1858–1860 (2009). [CrossRef] [PubMed]
  11. S. A. Harfenist, S. D. Cambron, E. W. Nelson, S. M. Berry, A. W. Isham, M. M. Crain, K. M. Walsh, R. S. Keynton, and R. W. Cohn, “Direct drawing of suspended filamentary micro- and nanostructures from liquid polymers,” Nano Lett.4(10), 1931–1937 (2004). [CrossRef]
  12. F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett.8(9), 2757–2761 (2008). [CrossRef] [PubMed]
  13. H. Yu, D. Liao, M. B. Johnston, and B. Li, “All-optical full-color displays using polymer nanofibers,” ACS Nano5(3), 2020–2025 (2011). [CrossRef] [PubMed]
  14. W. Long, W. Zou, Z. Hong, Y. Su, L. Tong, L. Yang, L. Zhou, X. Li, and J. Chen, “Characterization of DNA optical microfiber devices fabricated by drawing,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Technical Digest (CD) (Optical Society of America, 2011), paper CME1.
  15. J. Bures and R. Ghosh, “Power density of the evanescent field in the vicinity of a tapered fiber,” J. Opt. Soc. Am. A16(8), 1992–1996 (1999). [CrossRef]
  16. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003). [CrossRef] [PubMed]
  17. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express12(6), 1025–1035 (2004). [CrossRef] [PubMed]
  18. F. L. Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun.242(4-6), 445–455 (2004). [CrossRef]
  19. A. M. Zheltikov, “Birefringence of guided modes in photonic wires: Gaussian-mode analysis,” Opt. Commun.252(1-3), 78–83 (2005). [CrossRef]
  20. X. Jiang, Q. Yang, G. Vienne, Y. Li, L. Tong, J. Zhang, and L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett.89(14), 143513 (2006). [CrossRef]
  21. X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009). [CrossRef] [PubMed]
  22. R. Yan, J. H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol.7(3), 191–196 (2011). [CrossRef] [PubMed]
  23. P. Ying, G. Feng, X. Li, Z. Ma, J. Chen, Q. Zhu, and X. Zhang, “Supercontinuum generation based on nanofiber,” Optik (Stuttg.)119(13), 648–653 (2008). [CrossRef]
  24. A. Yariv and P. Yeh, Photonics: Optical-Electronics in Modern Communications, Sixth Edition (Publishing House of Electronics Industry, 2009), Chap. 6, 7.
  25. R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, “Tapered single-mode fibres and devices. part 2: experimental and theoretical quantification,” Optoelectronics, IEE Proceedings J138(5), 355–364 (1991). [CrossRef]
  26. Y. Jung, G. Brambilla, and D. J. Richardson, “Broadband single-mode operation of standard optical fibers by using a sub-wavelength optical wire filter,” Opt. Express16(19), 14661–14667 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited