OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 10 — Oct. 5, 2012

A digital x-ray tomosynthesis coupled near infrared spectral tomography system for dual-modality breast imaging

Venkataramanan Krishnaswamy, Kelly E. Michaelsen, Brian W. Pogue, Steven P. Poplack, Ian Shaw, Ken Defrietas, Ken Brooks, and Keith D. Paulsen  »View Author Affiliations

Optics Express, Vol. 20, Issue 17, pp. 19125-19136 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1271 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A Near Infrared Spectral Tomography (NIRST) system has been developed and integrated into a commercial Digital Breast Tomosynthesis (DBT) scanner to allow structural and functional imaging of breast in vivo. The NIRST instrument uses an 8-wavelength continuous wave (CW) laser-based scanning source assembly and a 75-element silicon photodiode solid-state detector panel to produce dense spectral and spatial projection data from which spectrally constrained 3D tomographic images of tissue chromophores are produced. Integration of the optical imaging system into the DBT scanner allows direct co-registration of the optical and DBT images, while also facilitating the synergistic use of x-ray contrast as anatomical priors in optical image reconstruction. Currently, the total scan time for a combined NIRST-DBT exam is ~50s with data collection from 8 wavelengths in the optical scan requiring ~42s to complete. The system was tested in breast simulating phantoms constructed using intralipid and blood in an agarose matrix with a 3 cm x 2 cm cylindrical inclusion at 1 cm depth from the surface. Diffuse image reconstruction of total hemoglobin (HbT) concentration resulted in accurate recovery of the lateral size and position of the inclusion to within 6% and 8%, respectively. Use of DBT structural priors in the NIRST reconstruction process improved the quantitative accuracy of the HbT recovery, and led to linear changes in imaged versus actual contrast, underscoring the advantages of dual-modality optical imaging approaches. The quantitative accuracy of the system can be further improved with independent measurements of scattering properties through integration of frequency or time domain data.

© 2012 OSA

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.7440) Medical optics and biotechnology : X-ray imaging

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: May 1, 2012
Revised Manuscript: June 21, 2012
Manuscript Accepted: June 22, 2012
Published: August 6, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics

Venkataramanan Krishnaswamy, Kelly E. Michaelsen, Brian W. Pogue, Steven P. Poplack, Ian Shaw, Ken Defrietas, Ken Brooks, and Keith D. Paulsen, "A digital x-ray tomosynthesis coupled near infrared spectral tomography system for dual-modality breast imaging," Opt. Express 20, 19125-19136 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Baker and J. Y. Lo, “Breast tomosynthesis: state-of-the-art and review of the literature,” Acad. Radiol.18(10), 1298–1310 (2011). [CrossRef] [PubMed]
  2. L. T. Niklason, B. T. Christian, L. E. Niklason, D. B. Kopans, D. E. Castleberry, B. H. Opsahl-Ong, C. E. Landberg, P. J. Slanetz, A. A. Giardino, R. Moore, D. Albagli, M. C. DeJule, P. F. Fitzgerald, D. F. Fobare, B. W. Giambattista, R. F. Kwasnick, J. Liu, S. J. Lubowski, G. E. Possin, J. F. Richotte, C. Y. Wei, and R. F. Wirth, “Digital tomosynthesis in breast imaging,” Radiology205(2), 399–406 (1997). [PubMed]
  3. A. D. A. Maidment, “The future of medical imaging,” Radiat. Prot. Dosimetry139(1-3), 3–7 (2010). [CrossRef] [PubMed]
  4. S. S. Feng and I. Sechopoulos, “Clinical digital breast tomosynthesis system: dosimetric characterization,” Radiology263(1), 35–42 (2012). [CrossRef] [PubMed]
  5. B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Combining near-infrared tomography and magnetic resonance imaging to study in vivo breast tissue: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure,” J. Biomed. Opt.10(5), 051504 (2005). [CrossRef] [PubMed]
  6. N. G. Chen, P. Guo, S. Yan, D. Piao, and Q. Zhu, “Simultaneous near-infrared diffusive light and ultrasound imaging,” Appl. Opt.40(34), 6367–6380 (2001). [CrossRef] [PubMed]
  7. Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology258(1), 89–97 (2011). [CrossRef] [PubMed]
  8. A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt.42(25), 5181–5190 (2003). [CrossRef] [PubMed]
  9. S. A. Qianqian Fang, J. Carp, G. Selb, Boverman, D. B. Quan Zhang, R. H. Kopans, E. L. Moore, D. H. Miller, Brooks, and D. A. Boas, “Combined optical imaging and mammography of the healthy breast: optical contrast derived from breast structure and compression,” IEEE Trans. Med. Imaging28(1), 30–42 (2009). [CrossRef] [PubMed]
  10. R. A. Abdi, H. L. Graber, Y. Xu, and R. L. Barbour, “Optomechanical imaging system for breast cancer detection,” J. Opt. Soc. Am. A28, 2473–2493 (2011).
  11. M. L. Flexman, M. A. Khalil, R. Al Abdi, H. K. Kim, C. J. Fong, E. Desperito, D. L. Hershman, R. L. Barbour, and A. H. Hielscher, “Digital optical tomography system for dynamic breast imaging,” J. Biomed. Opt.16(7), 076014 (2011). [CrossRef] [PubMed]
  12. A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. C. Hillman, S. R. Arridge, and A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett.28(23), 2339–2341 (2003). [CrossRef] [PubMed]
  13. A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt.44(11), 2082–2093 (2005). [CrossRef] [PubMed]
  14. R. E. Hendrick, E. D. Pisano, A. Averbukh, C. Moran, E. A. Berns, M. J. Yaffe, B. Herman, S. Acharyya, and C. Gatsonis, “Comparison of acquisition parameters and breast dose in digital mammography and screen-film mammography in the American College of Radiology Imaging Network digital mammographic imaging screening trial,” AJR Am. J. Roentgenol.194(2), 362–369 (2010). [CrossRef] [PubMed]
  15. B. W. Pogue, K. D. Paulsen, C. Abele, and H. Kaufman, “Calibration of near-infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms,” J. Biomed. Opt.5(2), 185–193 (2000). [CrossRef] [PubMed]
  16. T. O. McBride, B. W. Pogue, S. Jiang, U. L. Österberg, and K. D. Paulsen, “A parallel-detection frequency-domain near-infrared tomography system for hemoglobin imaging of the breast in vivo,” Rev Sci Instrum72(3), 1817–1824 (2001). [CrossRef]
  17. T. O. McBride, B. W. Pogue, U. L. Osterberg, and K. D. Paulsen, “Strategies for absolute calibration of near infrared tomographic tissue imaging,” Adv. Exp. Med. Biol.530, 85–99 (2003). [CrossRef] [PubMed]
  18. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009). [CrossRef] [PubMed]
  19. S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in vivo using spectrally-constrained reconstruction,” Technol. Cancer Res. Treat.4(5), 513–526 (2005). [PubMed]
  20. B. A. Brooksby, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Near-infrared tomography breast image reconstruction with a priori structural information from MRI: algorithm development for reconstructing heterogeneities,” IEEE J. Sel. Top. Quantum Electron.9(2), 199–209 (2003). [CrossRef]
  21. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express16(8), 5907–5925 (2008). [CrossRef] [PubMed]
  22. K. Michaelsen, V. Krishnaswamy, B. Pogue, S. Poplack, and K. D. Paulsen, “Near-infrared spectral tomography integrated with digital breast tomosynthesis: optical system design optimization,” Med. Phys.in press.
  23. C. M. Shafer, E. Samei, and J. Y. Lo, “The quantitative potential for breast tomosynthesis imaging,” Med. Phys.37(3), 1004–1016 (2010). [CrossRef] [PubMed]
  24. B. Ren, A. Smith, and Z. Jing, “Measurement of breast density with digital breast tomosynthesis,” Proc. SPIE8313, 83134Q, 83134Q-6 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited