OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 10 — Oct. 5, 2012

Amplified all-optical polarization phase modulator assisted by a local surface plasmon in Au-hybrid CdSe quantum dots

Kwangseuk Kyhm, Koo-Chul Je, and Robert A. Taylor  »View Author Affiliations

Optics Express, Vol. 20, Issue 18, pp. 19735-19743 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1269 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose an amplified all-optical polarization phase modulator assisted by a local surface plasmon in Au-hybrid CdSe quantum dots. When the local surface plasmon of a spherical Au quantum dot is in resonance with the exciton energy level of a CdSe quantum dot, a significant enhancement of the linear and nonlinear refractive index is found in both the real and imaginary terms via the interaction with the dipole field of the local surface plasmon. Given a gating pulse intensity, an elliptical polarization induced by the phase retardation is described in terms of elliptical and rotational angles. In the case that a larger excitation than the bleaching intensity is applied, the signal light can be amplified due to the presence of gain in the CdSe quantum dot. This enables a longer propagation of the signal light relative to the metal loss, resulting in more feasible polarization modulation.

© 2012 OSA

OCIS Codes
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(230.1150) Optical devices : All-optical devices
(240.6680) Optics at surfaces : Surface plasmons
(160.4236) Materials : Nanomaterials

ToC Category:
Optics at Surfaces

Original Manuscript: July 5, 2012
Revised Manuscript: August 2, 2012
Manuscript Accepted: August 3, 2012
Published: August 13, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics

Kwangseuk Kyhm, Koo-Chul Je, and Robert A. Taylor, "Amplified all-optical polarization phase modulator assisted by a local surface plasmon in Au-hybrid CdSe quantum dots," Opt. Express 20, 19735-19743 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. I. Klimov, Nanocrystal Quantum Dots, 2nd ed. (CRS press Taylor & Francis Group, 2010). [CrossRef]
  2. J. Zhang, Y. Tang, K. Lee, and M. Ouyang, “Tayloring light-matter-spin interactions in colloidal heterostructures,” Nature466, 91–95 (2010). [CrossRef] [PubMed]
  3. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nature Photon.1, 402–406 (2007). [CrossRef]
  4. J. B. Lee and N. A. Kotov, “Thermometer design at the nanoscale,” Nano Today2, 48–51 (2007). [CrossRef]
  5. A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett.6, 984–994 (2006). [CrossRef]
  6. W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-Metal nanoparticle molecule: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett.97, 146804 (2006). [CrossRef] [PubMed]
  7. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nature Mater.3, 601–605 (2004). [CrossRef]
  8. K. Okamoto, S. Vyawahare, and A. Schere, “Surface-plasmon enhanced bright emission from CdSe quantum-dot nanocrystals,” J. Opt. Soc. Am. B23, 1674–1678 (2006). [CrossRef]
  9. O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett.2, 1449–1452 (2002). [CrossRef]
  10. Y. Ito, K. Matsuda, and Y. Kanemitsu, “Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surface,” Phys. Rev. B75, 033309 (2007). [CrossRef]
  11. D. E. Gomez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett.10, 274–278 (2010). [CrossRef]
  12. C. W. Chen, C. H. Wang, C. C. Cheng, C. M. Wei, and Y. F. Chen, “Surface plasmon induced optical anisotropy of CdSe quantum dots on well-aligned gold nanorods grating,” J. Phys. Chem.C115, 1520–1523 (2011).
  13. M. I. Stockman, “Spasers explained,” Nat. Photonics2, 327–329 (2008). [CrossRef]
  14. M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett.101, 226806 (2008). [CrossRef] [PubMed]
  15. A. L. Efros, M. Rosen, M. Kuno, M. Nirmal, D. J. Norris, and M. Bawendi, “Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states,” Phys. Rev. B54, 4843–4856 (1996). [CrossRef]
  16. K. C. Je, I. Shin, J. H. Kim, and K. Kyhm, “Optical nonlinearities of fine exciton states in a CdSe quantum dot,” Appl. Phys. Lett.97, 103110 (2010). [CrossRef]
  17. H. Htoon, M. Furis, S. A. Crooker, S. Jeong, and V. I. Klimov, “Linearly polarized ‘fine structure’ of the bright exciton state in individual CdSe nanocrystal quantum dots,” Phys. Rev. B77, 035328 (2008). [CrossRef]
  18. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006). [CrossRef] [PubMed]
  19. A. M. Munro, B. Zacher, A. Graham, and N. R. Amstrong, “Photoemission spectroscopy of tethered CdSe nanocrystals: shifts in ionization potential and local vacuum level as a function of nanocrystal capping ligand,” ACS Appl. Mat. Interfaces2, 863–869 (2010). [CrossRef]
  20. E. Marx, D. S. Ginger, K. Walzer, K. Stokbro, and N. C. Greenham, “Self-assembled monolayers of CdSe nanocrystals on doped GaAs substrates,” Nano Lett.2, 911–914 (2002). [CrossRef]
  21. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]
  22. A. Trügler, Strong Coupling between a Metallic Nanoparticle and a Single Molecule, Diplomarbeit Thesis (Karl-Franzens Universität Graz, 2007).
  23. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electric Properties of Semiconductors, 4th ed. (World Scientific, 2004).
  24. M. Hawton and D. Nelson, “Quasibosonic exciton dynamics near the semiconductor band ege,” Phys. Rev. B57, 4000–4008 (1998). [CrossRef]
  25. The asymmetric absorption spectrum is also obtained for increasing the excitation as the nonlinear Fano effect in [6]
  26. A. Greilich, M. Schwab, T. Berstermann, T. Auer, R. Oulton, D. R. Yakovlev, M. Bayer, V. Stavarache, D. Reuter, and A. Wieck, “Tailored quantum dots for entangled photon pair creation,” Phys. Rev. B73, 045323 (2006). [CrossRef]
  27. R. R. Cooney, S. L. Sewall, D. M. Sagar, and P. Kambhampati, “Gain control in semiconductor quantum dots via state-resolved optical pumping,” Phys. Rev. Lett.102, 127404 (2009). [CrossRef] [PubMed]
  28. P. Kambhampati, “Multiexcitons in semiconductor nanocrystals: a platform for optoelectronics at high carrier concentration,” J. Phys. Chem. Lett.3(9), 1182–1190 (2012). [CrossRef]
  29. J. Kim, J. Lee, and K. Kyhm, “Surface-plasmon-assisted modal gain enhancement in Au-hybrid CdSe/ZnS nanocrystal quantum dots,” Appl. Phys. Lett.99, 213112 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited