OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 10 — Oct. 5, 2012

Improved signal model for confocal sensors accounting for object depending artifacts

Florian Mauch, Wolfram Lyda, Marc Gronle, and Wolfgang Osten  »View Author Affiliations

Optics Express, Vol. 20, Issue 18, pp. 19936-19945 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1177 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The conventional signal model of confocal sensors is well established and has proven to be exceptionally robust especially when measuring rough surfaces. Its physical derivation however is explicitly based on plane surfaces or point like objects, respectively. Here we show experimental results of a confocal point sensor measurement of a surface standard. The results illustrate the rise of severe artifacts when measuring curved surfaces. On this basis, we present a systematic extension of the conventional signal model that is proven to be capable of qualitatively explaining these artifacts.

© 2012 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(120.2830) Instrumentation, measurement, and metrology : Height measurements
(120.4800) Instrumentation, measurement, and metrology : Optical standards and testing
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure

ToC Category:

Original Manuscript: June 13, 2012
Revised Manuscript: July 16, 2012
Manuscript Accepted: July 25, 2012
Published: August 15, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics

Florian Mauch, Wolfram Lyda, Marc Gronle, and Wolfgang Osten, "Improved signal model for confocal sensors accounting for object depending artifacts," Opt. Express 20, 19936-19945 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. R. Corle and G. S. Kino, Confocal Scanning Optical Microscopy and Related Imaging Systems (Academic Press, 1996).
  2. A. Boyd, “Bibliography on confocal microscopy and its applications,” Scanning16, 33–56 (1994).
  3. A. Schuldt, “Seeing the wood for the trees,” in Nature Milestones in Light Microscopy 12–13 (Macmillan Publishers Limited, 2009).
  4. G. Molesini, G. Pedrini, P. Poggi, and F. Quercioli, “Focus-wavelength encoded optical profilometer,” Opt. Commun.49(4), 229–233 (1984). [CrossRef]
  5. M. A. Browne, O. Akinyemi, and A. Boyde, “Confocal Surface Profiling Utilizing Chromatic Aberration,” Scanning14(3), 145–153 (1992). [CrossRef]
  6. M. Petráň, M. Hadravský, M. Egger, and R. Galambos, “Tandem-scanning reflected light microscope,” J. Opt. Soc. Am.58(5), 661–664 (1968). [CrossRef]
  7. H. J. Tiziani, M. Wegner, and D. Steudle, “Confocal principle for macro- and microscopic surface and defect analysis,” Opt. Eng.39(1), 32 (2000). [CrossRef]
  8. H. J. Tiziani and H.-M. Uhde, “Three-dimensional image sensing by chromatic confocal microscopy,” Appl. Opt.33(10), 1838–1843 (1994). [CrossRef] [PubMed]
  9. K. Shi, S. Nam, P. Li, S. Yin, and Z. Liu, “Wavelength division multiplexed confocal microscopy using supercontinuum,” Opt. Commun.263(2), 156–162 (2006). [CrossRef]
  10. W. Lyda, M. Gronle, D. Fleischle, F. Mauch, and W. Osten, “Advantages of chromatic-confocal spectral interferometry in comparison to chromatic confocal microscopy,” Meas. Sci. Technol.23(5), 054009 (2012). [CrossRef]
  11. E. J. Botcherby, M. J. Booth, R. Juskaitis, and T. Wilson, “Real-time extended depth of field microscopy,” Opt. Express16(26), 21843–21848 (2008). [CrossRef] [PubMed]
  12. J. Liu, J. Tan, H. Bin, and Y. Wang, “Improved differential confocal microscopy with ultrahigh signal-to-noise ratio and reflectance disturbance resistibility,” Appl. Opt.48(32), 6195–6201 (2009). [CrossRef] [PubMed]
  13. T. Wilson and C. J. R. Sheppard, Theory and practice of scanning optical microscopy (Academic Press 1984).
  14. A. K. Ruprecht, T. F. Wiesendanger, and H. J. Tiziani, “Signal evaluation for high-speed confocal measurements,” Appl. Opt.41(35), 7410–7415 (2002). [CrossRef] [PubMed]
  15. D. Fleischle, W. Lyda, F. Mauch, and W. Osten, “Optical metrology for process control: modeling and simulation of sensors for a comparison of different measurement principles,” Proc. SPIE7718, 77181D, 77181D-12 (2010). [CrossRef]
  16. J. F. Aguilar and E. R. Mendez, “On the limitations of the confocal scanning optical microscope as a profilometer,” J. Mod. Opt.42(9), 1785–1794 (1995). [CrossRef]
  17. J. F. Aguilar and E. R. Mendez, “Imaging optically thick objects in scanning microscopy: perfectly conducting surfaces,” J. Opt. Soc. Am. A11(1), 155–167 (1994). [CrossRef]
  18. J. Bischoff, E. Manske, and H. Baitinger, “Modeling of profilometry with laser focus sensors,” Proc. SPIE8083, 80830C, 80830C-12 (2011). [CrossRef]
  19. W. Weise, P. Zinin, T. Wilson, A. Briggs, and S. Boseck, “Imaging of spheres with the confocal scanning optical microscope,” Opt. Lett.21(22), 1800–1802 (1996). [CrossRef] [PubMed]
  20. J. Rička, “Dynamic light scattering with single-mode and multimode receivers,” Appl. Opt.32(15), 2860–2875 (1993). [CrossRef] [PubMed]
  21. E. Neumann, Single-Mode Fibers (Springer-Verlag, 1988).
  22. J. W. Goodman, Introduction to Fourier Optics, 3rd edition (Roberts & Company Publishers, 2005).
  23. A. Atalar, “An angularspectrum approach to contrast in reflection acoustic microscopy,” J. Appl. Phys.49(10), 5130–5139 (1978). [CrossRef]
  24. M. Born and E. Wolf, Principles of Optics, 6th edition (Pergamon Press, 1980).
  25. VDI/VDE-Gesellschaft, “Optical measurement of microtopography – Calibration of confocal microscopes and depth setting standards for roughness measurement,” 2655 Blatt 1.2, Beuth Verlag, (2010).
  26. R. Krüger-Sehm, P. Bakucz, L. Jung, and H. Wilhelms, “Chirp calibration standards for surface measuring instruments,” Tech. Mess.74(11), 572–576 (2007). [CrossRef]
  27. H. Lajunen, J. Tervo, J. Turunen, T. Vallius, and F. Wyrowski, “Simulation of light propagation by local spherical interface approximation,” Appl. Opt.42(34), 6804–6810 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited