OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 10 — Oct. 5, 2012

Multicore fiber with integrated fiber Bragg gratings for background-free Raman sensing

Sebastian Dochow, Ines Latka, Martin Becker, Ron Spittel, Jens Kobelke, Kay Schuster, Albrecht Graf, Sven Brückner, Sonja Unger, Manfred Rothhardt, Benjamin Dietzek, Christoph Krafft, and Jürgen Popp  »View Author Affiliations


Optics Express, Vol. 20, Issue 18, pp. 20156-20169 (2012)
http://dx.doi.org/10.1364/OE.20.020156


View Full Text Article

Enhanced HTML    Acrobat PDF (2563 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In the last years a variety of fiber optic Raman probes emerged, which are only partly suited for in vivo applications. The in vivo capability is often limited by the bulkiness of the probes. The size is associated with the required filtering of the probes, which is necessary due to Raman scattering inside the fibers. We employed in-line fiber Bragg gratings (FBG) as notch filter for the collection path and integrated them in a novel type of Raman probe. Multicore singlemode fibers (MCSMF) were designed and drawn integrating 19 singlemode cores to achieve better collection efficiency. A Raman probe was assembled with one excitation fiber and six MCSMF with inscribed FBGs as collection fibers. The probe was characterized regarding Raman background suppression, collection efficiency, and distance dependence. First Raman measurements on brain tissue are presented.

© 2012 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(290.5860) Scattering : Scattering, Raman
(300.6330) Spectroscopy : Spectroscopy, inelastic scattering including Raman
(300.6450) Spectroscopy : Spectroscopy, Raman
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 26, 2012
Revised Manuscript: August 3, 2012
Manuscript Accepted: August 3, 2012
Published: August 20, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Sebastian Dochow, Ines Latka, Martin Becker, Ron Spittel, Jens Kobelke, Kay Schuster, Albrecht Graf, Sven Brückner, Sonja Unger, Manfred Rothhardt, Benjamin Dietzek, Christoph Krafft, and Jürgen Popp, "Multicore fiber with integrated fiber Bragg gratings for background-free Raman sensing," Opt. Express 20, 20156-20169 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-18-20156


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Krafft, B. Dietzek, and J. Popp, “Raman and CARS microspectroscopy of cells and tissues,” Analyst (Lond.)134(6), 1046–1057 (2009), http://www.ncbi.nlm.nih.gov/pubmed/19475129 . [CrossRef] [PubMed]
  2. C. Krafft, G. Steiner, C. Beleites, and R. Salzer, “Disease recognition by infrared and Raman spectroscopy,” J Biophotonics2(1-2), 13–28 (2009), http://www.ncbi.nlm.nih.gov/pubmed/19343682 . [CrossRef] [PubMed]
  3. Q. Tu and C. Chang, “Diagnostic applications of Raman spectroscopy,” Nanomed.- Nanotechnology8, 545–558 (2011), doi:. [CrossRef]
  4. T. Meyer, N. Bergner, C. Bielecki, C. Krafft, D. Akimov, B. F. M. Romeike, R. Reichart, R. Kalff, B. Dietzek, and J. Popp, “Nonlinear microscopy, infrared, and Raman microspectroscopy for brain tumor analysis,” J. Biomed. Opt.16(2), 021113 (2011), doi:. [CrossRef] [PubMed]
  5. Z. Huang, H. Zeng, I. Hamzavi, D. I. McLean, and H. Lui, “Rapid near-infrared Raman spectroscopy system for real-time in vivo skin measurements,” Opt. Lett.26(22), 1782–1784 (2001). [CrossRef] [PubMed]
  6. C. Krafft, S. Dochow, I. Latka, B. Dietzek, and J. Popp, “Diagnosis and Screening of Cancer Tissues by fiber optic probe Raman spectroscopy,” Biomed. Spectrosc. Imaging1, 39–55 (2012), doi:. [CrossRef]
  7. Y. Komachi, H. Sato, K. Aizawa, and H. Tashiro, “Micro-optical fiber probe for use in an intravascular Raman endoscope,” Appl. Opt.44(22), 4722–4732 (2005), doi:. [CrossRef] [PubMed]
  8. J. T. Motz, M. Hunter, L. H. Galindo, J. A. Gardecki, J. R. Kramer, R. R. Dasari, and M. S. Feld, “Optical fiber probe for biomedical Raman spectroscopy,” Appl. Opt.43(3), 542–554 (2004), doi:. [CrossRef] [PubMed]
  9. Y. Komachi, T. Katagiri, H. Sato, and H. Tashiro, “Improvement and analysis of a micro Raman probe,” Appl. Opt.48(9), 1683–1696 (2009), doi:. [CrossRef] [PubMed]
  10. I. A. Boere, T. C. Bakker Schut, J. van Den Boogert, R. W. F. de Bruin, and G. J. Puppels, “Use of fibre optic probes for detection of Barrett’s epithelium in the rat oesophagus by Raman spectroscopy,” Vib. Spectrosc.32(1), 47–55 (2003), doi:. [CrossRef]
  11. P. R. Stoddart and D. J. White, “Optical fibre SERS sensors,” Anal. Bioanal. Chem.394(7), 1761–1774 (2009), http://www.springerlink.com/content/51k1n72204m22153/ . [CrossRef] [PubMed]
  12. A. Glebov, O. Mokhun, V. Smirnov, L. Glebov, B. Roussel, H.-J. Reich, and F. Adar, “Novel volume Bragg grating notch filters for ultralow-frequency Raman measurements,” (2010), http://www.optigrate.com/ .
  13. M. J. Pelletier, “Fiber optic probe with integral optical filtering”, Kaiser Optical Systems, Inc., US 5,862,273 (1999).
  14. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997), http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=618320 .
  15. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997), http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=618377 . [CrossRef]
  16. W. Ecke, I. Latka, R. Willsch, A. Reutlinger, and R. Graue, “Fibre optic sensor network for spacecraft health monitoring,” Meas. Sci. Technol.12, 974–980 (2001), doi:. [CrossRef]
  17. K. Schroeder, W. Ecke, J. Apitz, E. Lembke, and G. Lenschow, “A fibre Bragg grating sensor system monitors operational load in a wind turbine rotor blade,” Meas. Sci. Technol.17(5), 1167–1172 (2006), doi:. [CrossRef]
  18. I. Latka, T. Habisreuther, and M. Zeisberger, “Fiber Bragg grating based spatially resolved characterization of flux-pinning-induced strain of disk-shaped bulk YBCO samples,” Cryogenics49(7), 340–345 (2009), doi:. [CrossRef]
  19. I. Latka, W. Ecke, B. Höfer, T. Habisreuther, and R. Willsch, “Fiber optic Bragg gratings as magnetic field-insensitive strain sensors for the surveillance of cryogenic devices,” Cryogenic49(9), 490–496 (2009), doi:. [CrossRef]
  20. http://www.chem.ualberta.ca/~mccreery/ramanmaterials.html
  21. E. Kapon, J. Katz, and A. Yariv, “Supermode analysis of phase-locked arrays of semiconductor lasers,” Opt. Lett.9(4), 125–127 (1984). [CrossRef]
  22. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=618322 . [CrossRef]
  23. http://www.comsol.com
  24. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt.23(24), 4486–4493 (1984), doi:. [CrossRef] [PubMed]
  25. K. Busch, S. Lölkes, R. B. Wehrspohn, and H. Föll, Photonic Crystals: Advances in Design, Fabrication, and Characterization (Wiley-VCH Verlag GmbH & Co. KGaA, 2004), Chap. 14.
  26. K. Schuster, K. Gerth, J. Kirchhof, J. Kobelke, “Verfahren zur Herstellung von strukturhomogenen mikrooptischen Fasern,“ Institut für physikalische Hochtechnologie e.V., DE102004059868B3 (2006).
  27. H. Bartelt, K. Schuster, S. Unger, C. Chojetzki, M. W. Rothhardt, and I. Latka, “Single-pulse fiber Bragg gratings and specific coatings for use at elevated temperatures,” Appl. Opt.46(17), 3417–3424 (2007). [CrossRef] [PubMed]
  28. M. Becker, J. Bergmann, S. Brückner, M. Franke, E. Lindner, M. W. Rothhardt, and H. Bartelt, “Fiber Bragg grating inscription combining DUV sub-picosecond laser pulses and two-beam interferometry,” Opt. Express16(23), 19169–19178 (2008). [CrossRef] [PubMed]
  29. E. Lindner, M. Becker, M. Rothhardt, and H. Bartelt, “Generation and characterization of first order fiber Bragg gratings with Bragg wavelength in the visible spectral range,” Opt. Commun.281(18), 4612–4615 (2008), doi:. [CrossRef]
  30. M. W. Rothhardt, C. Chojetzki, and H. R. Mueller, “High-mechanical strength single-pulse draw tower gratings,” Proc. SPIE5579, 127–135 (2004). [CrossRef]
  31. V. Mizrahi and J. E. Sipe, “Optical Properties of Photosensitive Fiber Phase Gratings,” J. Lightwave Technol.11(10), 1513–1517 (1993). [CrossRef]
  32. A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum.68(12), 4309–4341 (1997), http://link.aip.org/link/RSINAK/v68/i12/p4309/s1&Agg=doi . [CrossRef]
  33. I. Latka, S. Dochow, C. Krafft, B. Dietzek, H. Bartelt, and J. Popp, “Development of a fiber-based Raman probe for clinical diagnostics,” Proc. SPIE8087, 80872D, 80872D-8 (2011). [CrossRef]
  34. T. F. Cooney, H. T. Skinner, and S. M. Angel, “Comparative study of some fiber optic remote Raman probe designs. Part I: Model for liquids and transparent solids,” Appl. Spectrosc.50(7), 836–848 (1996). [CrossRef]
  35. C. Krafft, S. B. Sobottka, G. Schackert, and R. Salzer, “Near infrared Raman spectroscopic mapping of native brain tissue and intracranial tumors,” Analyst (Lond.)130(7), 1070–1077 (2005). [CrossRef] [PubMed]
  36. S. O. Konorov, C. J. Addison, H. G. Schulze, R. F. B. Turner, and M. W. Blades, “Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy,” Opt. Lett.31(12), 1911–1913 (2006). [CrossRef] [PubMed]
  37. K. M. Tan, G. P. Singh, C. S. Herrington, and C. T. A. Brown, “Near-infrared Raman spectroscopy using hollow-core photonic bandgap fibers,” Opt. Commun.283(16), 3204–3206 (2010). [CrossRef]
  38. M. Abtahi, A. D. Simard, S. Doucet, S. LaRochelle, and L. A. Rusch, “Characterization of a linearly chirped FBG under local temperature variations for spectral shaping applications,” J. Lightwave Technol.29(5), 750–755 (2011). [CrossRef]
  39. O. Frazão, M. Melo, P. V. S. Marques, and J. L. Santos, “Chirped Bragg grating fabricated in fused fibre taper for strain-temperature discrimination,” Meas. Sci. Technol.16(4), 984–988 (2005), doi:. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited