OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 10 — Oct. 5, 2012

Hierarchical Bayesian estimation improves depth accuracy and spatial resolution of diffuse optical tomography

Takeaki Shimokawa, Takashi Kosaka, Okito Yamashita, Nobuo Hiroe, Takashi Amita, Yoshihiro Inoue, and Masa-aki Sato  »View Author Affiliations


Optics Express, Vol. 20, Issue 18, pp. 20427-20446 (2012)
http://dx.doi.org/10.1364/OE.20.020427


View Full Text Article

Enhanced HTML    Acrobat PDF (1521 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High-density diffuse optical tomography (HD-DOT) is an emerging technique for visualizing the internal state of biological tissues. The large number of overlapping measurement channels due to the use of high-density probe arrays permits the reconstruction of the internal optical properties, even with a reflectance-only measurement. However, accurate three-dimensional reconstruction is still a challenging problem. First, the exponentially decaying sensitivity causes a systematic depth-localization error. Second, the nature of diffusive light makes the image blurred. In this paper, we propose a three-dimensional reconstruction method that overcomes these two problems by introducing sensitivity-normalized regularization and sparsity into the hierarchical Bayesian method. Phantom experiments were performed to validate the proposed method under three conditions of probe interval: 26 mm, 18.4 mm, and 13 mm. We found that two absorbers with distances shorter than the probe interval could be discriminated under the high-density conditions of 18.4-mm and 13-mm intervals. This discrimination ability was possible even if the depths of the two absorbers were different from each other. These results show the high spatial resolution of the proposed method in both depth and horizontal directions.

© 2012 OSA

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.3190) Image processing : Inverse problems
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Image Processing

History
Original Manuscript: April 9, 2012
Revised Manuscript: August 12, 2012
Manuscript Accepted: August 15, 2012
Published: August 21, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Takeaki Shimokawa, Takashi Kosaka, Okito Yamashita, Nobuo Hiroe, Takashi Amita, Yoshihiro Inoue, and Masa-aki Sato, "Hierarchical Bayesian estimation improves depth accuracy and spatial resolution of diffuse optical tomography," Opt. Express 20, 20427-20446 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-18-20427


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults,” Neurosci. Lett.154, 101–104 (1993). [CrossRef] [PubMed]
  2. Y. Hoshi and M. Tamura, “Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man,” Neurosci. Lett.150, 5–8 (1993). [CrossRef] [PubMed]
  3. A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys.22, 1997–2005 (1995). [CrossRef] [PubMed]
  4. E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, and D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt.36, 21–31 (1997). [CrossRef] [PubMed]
  5. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol.50, R1–R43 (2005). [CrossRef] [PubMed]
  6. D. A. Boas and A. M. Dale, “Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function,” Appl. Opt.44, 1957–1968 (2005). [CrossRef] [PubMed]
  7. B. W. Zeff, B. R. White, H. Dehghani, B. L. Schlaggar, and J. P. Culver, “Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography,” Proc. Natl. Acad. Sci. U.S.A.104, 12169–12174 (2007). [CrossRef] [PubMed]
  8. C. Habermehl, S. Holtze, J. Steinbrink, S. P. Koch, H. Obrig, J. Mehnert, and C. H. Schmitz, “Somatosensory activation of two fingers can be discriminated with ultrahigh-density diffuse optical tomography,” NeuroImage59, 3201–3211 (2011). [CrossRef] [PubMed]
  9. J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys.30, 235–247 (2003). [CrossRef] [PubMed]
  10. A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt.42, 5181–5190 (2003). [CrossRef] [PubMed]
  11. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25, 711–732 (2008). [CrossRef] [PubMed]
  12. Q. Fang, J. Selb, S. A. Carp, G. Boverman, E. L. Miller, D. H. Brooks, R. H. Moore, D. B. Kopans, and D. A. Boas, “Combined optical and X-ray tomosynthesis breast imaging,” Radiology258, 89–97 (2011). [CrossRef]
  13. F. Gao, H. Zhao, and Y Yamada, “Improvement of image quality in diffuse optical tomography by use of full time-resolved data,” Appl. Opt.41, 778–791 (2002). [CrossRef] [PubMed]
  14. M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol.50, 2837–2858 (2005). [CrossRef] [PubMed]
  15. F. Abdelnour, C. Genovese, and T. Huppert, “Hierarchical Bayesian regularization of reconstructions for diffuse optical tomography using multiple priors,” Biomed. Opt. Express1, 1084–1103 (2010). [CrossRef]
  16. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Österberg, and K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt.38, 2950–2961 (1999). [CrossRef]
  17. J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23, 911–924 (2003). [CrossRef] [PubMed]
  18. H. Niu, F. Tian, Z. J. Lin, and H. Liu, “Development of a compensation algorithm for accurate depth localization in diffuse optical tomography,” Opt. Lett.35, 429–431 (2010). [CrossRef] [PubMed]
  19. H. Niu, Z. J. Lin, F. Tian, S. Dhamne, and H. Liu, “Comprehensive investigation of three-dimensional diffuse optical tomography with depth compensation algorithm,” J. Biomed. Opt.15, 046005 (2010). [CrossRef] [PubMed]
  20. N. Cao, A. Nehorai, and M. Jacobs, “Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization algorithm,” Opt. Express15, 13695–13708 (2007). [CrossRef] [PubMed]
  21. P. Mohajerani, A. A. Eftekhar, J. Huang, and A. Adibi, “Optimal sparse solution for fluorescent diffuse optical tomography: theory and phantom experimental results,” Appl. Opt.46, 1679–1685 (2007). [CrossRef] [PubMed]
  22. Y. Lu, X. Zhang, A. Douraghy, D. Stout, J. Tian, T. F. Chan, and A. F. Chatziioannou, “Source reconstruction for spectrally-resolved bioluminescence tomography with sparse a priori information,” Opt. Express17, 8062–8080 (2009). [CrossRef] [PubMed]
  23. S. Okawa, Y. Hoshi, and Y. Yamada, “Improvement of image quality of time-domain diffuse optical tomography with lp sparsity regularization,” Biomed. Opt. Express2, 3334–3348 (2011). [CrossRef] [PubMed]
  24. D. Wipf and S. Nagarajan, “A unified Bayesian framework for MEG/EEG source imaging,” Neuroimage44, 947–966 (2009). [CrossRef]
  25. F. Lucka, S. Pursiainen, M. Burger, and C. H. Wolters, “Hierarchical Bayesian inference for the EEG inverse problem using realistic FE head models: depth localization and source separation for focal primary currents,” Neuroimage61, 1364–1382 (2012). [CrossRef] [PubMed]
  26. D. Wipf and S. Nagarajan, “A new view of automatic relevance determination,” Adv. Neural Inf. Process. Syst.20, 1625–1632 (2008).
  27. M. Sato, T. Yoshioka, S. Kajihara, K. Toyama, N. Goda, K. Doya, and M. Kawato, “Hierarchical Bayesian estimation for MEG inverse problem,” NeuroImage23, 806–826 (2004). [CrossRef] [PubMed]
  28. T. Aihara, Y. Takeda, K. Takeda, W. Yasuda, T. Sato, Y. Otaka, T. Hanakawa, M. Honda, M. Liu, M. Kawato, M. Sato, and R. Osu, “Cortical current source estimation from electroencephalography in combination with near-infrared spectroscopy as a hierarchical prior,” NeuroImage59, 4006–4021 (2012). [CrossRef]
  29. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988).
  30. M. A. O’Leary, “Imaging with diffuse photon density waves,” Ph.D. Thesis, Unversity of Pennsylvania (1996).
  31. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl.15, R41–R93 (1999). [CrossRef]
  32. S. R. Arridge and J. C. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl.25, 123010 (2009). [CrossRef]
  33. Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express17, 20178–20190 (2009). [CrossRef] [PubMed]
  34. R. C. Haskell, L. O. Svaasand, T. T. Tsay, T. C. Feng, M. S. McAdams, and B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A11, 2727–2741 (1994). [CrossRef]
  35. C. M. Bishop, Pattern Recognition and Machine Learning (Springer, New York, 2006).
  36. H. Akaike, “Likelihood and the Bayes procedure,” in Bayesian Statistics, J. M. Bernardo, M. H. De Groot, D. V. Lindley, and A. F. M. Smith, eds. (Univ. Press, Valencia, 1980), 143–166.
  37. J. Selb, A. M. Dale, and D. A. Boas, “Linear 3D reconstruction of time-domain diffuse optical imaging differential data: improved depth localization and lateral resolution,” Opt. Express15, 16400–16412 (2007). [CrossRef] [PubMed]
  38. H. Dehghani, B. R. White, B. W. Zeff, A. Tizzard, and J. P. Culver, “Depth sensitivity and image reconstruction analysis of dense imaging arrays for mapping brain function with diffuse optical tomography,” Appl. Opt.48, D137–D143 (2009). [CrossRef] [PubMed]
  39. A. C. Faul and M. E. Tipping, “Analysis of sparse Bayesian learning,” Adv. Neural Inf. Process. Syst.14, 383–389 (2002).
  40. H. Attias, “Inferring parameters and structure of latent variable models by variational Bayes,” Proc. 15th Conf. on Uncertainty in Artificial Intelligence, Morgan Kaufmann, 21–30 (1999).
  41. M. Sato, “Online model selection based on the variational Bayes,” Neural Comput.13, 1649–1681 (2001). [CrossRef]
  42. M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett.20, 426–428 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited