OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 11 — Oct. 31, 2012

The effect of silicon loss and fabrication tolerance on spectral properties of porous silicon Fabry-Perot cavities in sensing applications

U. C. Hasar, I. Y. Ozbek, E. A. Oral, T. Karacali, and H. Efeoglu  »View Author Affiliations

Optics Express, Vol. 20, Issue 20, pp. 22208-22223 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (4390 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we investigate the effect of non-uniformities (enlargement of current passage, non-equal surface current densities, etc.) in axial as well as transverse directions of a porous silicon Fabry-Perot (FP) cavity as well as loss nature of bulk silicon on spectral properties of this cavity, even that cavity is created with an anisotropic etching process. Without correct and comprehensive characterization of such cavities by incorporating these non-uniformities and inherent lossy nature of a cavity, detection and identification of biological and chemical molecules by that cavity may yield unpredictable and misleading results. From our simulations, we note the following two key points. First, effects of the refractive index and the thickness of microcavity region of a lossless or lossy FP cavity on resonance wavelength is more prevailing than those of first and last layers. Second, the effect of some small loss inside the FP cavity is not detectable by the measurement of resonance wavelength whereas the same influence is noticeable by the measurement of reflectivity. We carried out some measurements from two different regions on the fabricated cavities to validate our simulation results. From a practical point of view in correct detection and/or identification of lossy biological or chemical vapor by FP cavities, we conclude that not only the measurement of resonance wavelength as well as its shift but also the reflectivity value at the resonance wavelength or some specific wavelengths should be utilized.

© 2012 OSA

OCIS Codes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.2440) Instrumentation, measurement, and metrology : Filters
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:

Original Manuscript: July 16, 2012
Revised Manuscript: August 10, 2012
Manuscript Accepted: August 12, 2012
Published: September 13, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

U. C. Hasar, I. Y. Ozbek, E. A. Oral, T. Karacali, and H. Efeoglu, "The effect of silicon loss and fabrication tolerance on spectral properties of porous silicon Fabry-Perot cavities in sensing applications," Opt. Express 20, 22208-22223 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Q. Lu and X. S. Zhao, Nanoporous Materials: Science and Engineering (Imperial College Press, 2005).
  2. L. Pavesi, “Porous silicon dielectric multilayers and microcavities,” Riv. Nuovo Cim. 20(10), 1–76 (1997). [CrossRef]
  3. K. A. Kilian, T. Bocking, and J. J. Gooding, “The importance of surface chemistry in nanostructured materials: lessons from mesoporous silicon photonic biosensors,” Chem. Commun. (Camb.) 630, 630–640 (2009). [CrossRef]
  4. I. Suarez, V. Chirvony, D. Hill, and J. Martinez-Pastor, “Simulation of surface-modified porous silicon photonic crystals for biosensing applications,” Photon. Nanostruct.: Fundam. Appl. 9, 304–311 (2011).
  5. V. Agarwal, M. E. Mora-Ramos, and B. Alvarado-Tenorio, “Optical properties of multilayered Period-Doubling and Rudin-Shapiro porous silicon dielectric heterostructures,” Photon. Nanostruct.: Fundam. Appl. 7(2), 63–68 (2009). [CrossRef]
  6. C. Jamois, C. Li, R. Orobtchouk, and T. Benyattou, “Slow Bloch surface wave devices on porous silicon for sensing applications,” Photon. Nanostruct.: Fundam. Appl. 8(2), 72–77 (2010). [CrossRef]
  7. V. Mulloni and L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76(18), 2523–2525 (2000). [CrossRef]
  8. H. Ouyang, M. Christophersen, and P. M. Fauchet, “Enhanced control of porous silicon morphology from macropore to mesopore formation,” Phys. Status Solidi., A Appl. Mater. Sci. 202(8), 1396–1401 (2005). [CrossRef]
  9. P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86(4), 1781–2367 (1999). [CrossRef]
  10. F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1(1), 39–41 (2002). [CrossRef] [PubMed]
  11. E. Lorenzo, C. J. Oton, N. E. Capuj, M. Ghulinyan, D. Navarro-Urrios, Z. Gaburro, and L. Pavesi, “Porous silicon-based rugate filters,” Appl. Opt. 44(26), 5415–5421 (2005). [CrossRef] [PubMed]
  12. K.-P. S. Dancil, D. P. Greiner, and M. J. Sailor, “A porous silicon optical biosensor: detection of reversible binding of IgG to a protein A-modified surface,” J. Am. Chem. Soc. 121(34), 7925–7930 (1999). [CrossRef]
  13. S. D. Alvarez, A. M. Derfus, M. P. Schwartz, S. N. Bhatia, and M. J. Sailor, “The compatibility of hepatocytes with chemically modified porous silicon with reference to in vitro biosensors,” Biomaterials 30(1), 26–34 (2009). [CrossRef] [PubMed]
  14. T. Karacali, M. Alanyalioglu, and H. Efeoglu, “Single and double Fabry-Perot structure based on porous silicon for chemical sensors,” IEEE Sens. J. 9(12), 1667–1672 (2009). [CrossRef]
  15. H. Ouyang, C. C. Striemer, and P. M. Fauchet, “Quantitative analysis of the sensitivity of porous silicon optical biosensors,” Appl. Phys. Lett. 88(16), 163108 (2006). [CrossRef]
  16. H. Yang and P. Jiang, “Macroporous photonic crystal-based vapor detectors created by doctor blade coating,” Appl. Phys. Lett. 98(1), 011104 (2011). [CrossRef]
  17. J. Liu, Y. Sun, and X. Fan, “Highly versatile fiber-based optical Fabry-Perot gas sensor,” Opt. Express 17(4), 2731–2738 (2009). [CrossRef] [PubMed]
  18. J. Liu, Y. Sun, D. J. Howard, G. Frye-Mason, A. K. Thompson, S.-J. Ja, S.-K. Wang, M. Bai, H. Taub, M. Almasri, and X. Fan, “Fabry-Perot cavity sensors for multipoint on-column micro gas chromatography detection,” Anal. Chem. 82(11), 4370–4375 (2010). [CrossRef] [PubMed]
  19. K. Reddy and X. Fan, “Self-referenced composite Fabry-Perot cavity vapor sensors,” Opt. Express 20(2), 966–971 (2012). [CrossRef] [PubMed]
  20. D. M. Pozar, Microwave Engineering (Wiley, Hoboken, NJ, 2005).
  21. P. Schmuki, D. J. Lockwood, Y. H. Ogata, M. Seo, and H. S. Isaacs, eds., Pits and Pores II (Formation, Properties, and Significance for Advanced Materials) (Electrochemical Society, 2004).
  22. A. Jane, R. Dronov, A. Hodges, and N. H. Voelcker, “Porous silicon biosensors on the advance,” Trends Biotechnol. 27(4), 230–239 (2009). [CrossRef] [PubMed]
  23. B. Cakmak, T. Karacali, and S. Yu, “Theoretical investigation of chirped mirrors in semiconductor lasers,” Appl. Phys. B 81(1), 33–37 (2005). [CrossRef]
  24. J. B. Pendry and A. MacKinnon, “Calculation of photon dispersion relations,” Phys. Rev. Lett. 69(19), 2772–2775 (1992). [CrossRef] [PubMed]
  25. P. Markos and C. M. Soukoulis, “Transmission studies of left-handed materials,” Phys. Rev. B 65(3), 033401 (2001). [CrossRef]
  26. P. Markos and C. M. Soukoulis, “Numerical studies of left-handed materials and arrays of split ring resonators,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(33 Pt 2B), 036622 (2002). [CrossRef] [PubMed]
  27. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, Hoboken, NJ, 1989).
  28. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer konstanten von hererogenen substanzen,” Ann. Phys. 24, 636–679 (1935). [CrossRef]
  29. http://www.virginiasemi.com
  30. U. C. Hasar and C. R. Westgate, “A broadband and stable method for unique complex permittivity determination of low-loss materials,” IEEE Trans. Microw. Theory Tech. 57(2), 471–477 (2009). [CrossRef]
  31. U. C. Hasar, “A fast and accurate amplitude-only transmission-reflection method for complex permittivity determination of lossy materials,” IEEE Trans. Microw. Theory Tech. 56(9), 2129–2135 (2008). [CrossRef]
  32. A. Papoulis, Probability, Radom Variables and Stochastic Processes (Mcgraw-Hill, NY, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited