OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 11 — Oct. 31, 2012

Phase shifting technique for extended inline holographic microscopy with a pinhole array

Christian Graulig, Mario Kanka, and Rainer Riesenberg  »View Author Affiliations

Optics Express, Vol. 20, Issue 20, pp. 22383-22390 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2371 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Digital inline holographic microscopy using a pinhole for sample illumination allows lensless imaging. To overcome restrictions of the sample size and density in the setup additional reference waves are generated by extending the single pinhole to a regular 2D pinhole array illumination. A technique is presented that uses phase shifting between the pinhole waves. Multiple foci with stable phase differences and a phase error (rms) of 0.027 rad generate pinhole waves which illuminate an undiluted, dense blood smear sample. Amplitude and phase images of the blood sample were sucessfully reconstructed.

© 2012 OSA

OCIS Codes
(180.0180) Microscopy : Microscopy
(090.1995) Holography : Digital holography
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:

Original Manuscript: July 12, 2012
Revised Manuscript: August 29, 2012
Manuscript Accepted: September 9, 2012
Published: September 17, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Christian Graulig, Mario Kanka, and Rainer Riesenberg, "Phase shifting technique for extended inline holographic microscopy with a pinhole array," Opt. Express 20, 22383-22390 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. London Ser. A 197, 454–487 (1949). [CrossRef]
  2. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography of microspheres,” Appl. Opt. 41, 5367–5375 (2002). [CrossRef] [PubMed]
  3. J. Garcia-Sucerquia, W. Xu, M. H. Jericho, and H. J. Kreuzer, “Immersion digital in-line holographic microscopy,” Opt. Lett. 31, 1211–1213 (2006). [CrossRef] [PubMed]
  4. M. Paturzo and P. Ferraro, “Correct self-assembling of spatial frequencies in super-resolution synthetic aperture digital holography,” Opt. Lett. 34, 3650–3652 (2009). [CrossRef] [PubMed]
  5. V. Micó and Z. Zalevsky, “Superresolved digital in-line holographic microscopy for high-resolution lensless biological imaging,” J. Biomed. Optics 15, 046027 (2010). [CrossRef]
  6. M. Kanka, R. Riesenberg, P. Petruck, and C. Graulig, “High resolution (NA=0.8) in lensless in-line holographic microscopy with glass sample carriers,” Opt. Lett. 36, 3651–3653 (2011). [CrossRef] [PubMed]
  7. M. H. Jericho, H. J. Kreuzer, M. Kanka, and R. Riesenberg, “Quantitative phase and refractive index measurements with point-source digital in-line holographic microscopy,” Appl. Opt. 51, 1503–1515 (2012). [CrossRef] [PubMed]
  8. Y. Zhang, G. Pedrini, W. Osten, and H. Tiziani, “Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm,” Opt. Express 11, 3234–3241 (2003). [CrossRef] [PubMed]
  9. A. Greenbaum and A. Ozcan, “Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy,” Opt. Express 20, 3129–3143 (2012). [CrossRef] [PubMed]
  10. E. Leith and J. Upatnieks, “Wavefront reconstruction with diffused illumination and three-dimensional objects,” J. Opt. Soc. Am. 54, 1295–1301 (1964). [CrossRef]
  11. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000). [CrossRef]
  12. N. Pavillon, C. Arfire, I. Bergoënd, and C. Depeursinge, “Iterative method for zero-order suppression in off-axis digital holography,” Opt. Express 18, 15318–15331 (2010). [CrossRef] [PubMed]
  13. A. Jesacher, W. Harm, S. Bernet, and M. Ritsch-Marte, “Quantitative single-shot imaging of complex objects using phase retrieval with a designed periphery,” Opt. Express 20, 5470–5480 (2012). [CrossRef] [PubMed]
  14. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997). [CrossRef] [PubMed]
  15. I. Moreno, A. Lizana, A. Márquez, C. Iemmi, E. Fernández, J. Campos, and M. J. Yzuel, “Time fluctuations of the phase modulation in a liquid crystal on silicon display: characterization and effects in diffractive optics,” Opt. Express 16, 16711–16722 (2008). [CrossRef] [PubMed]
  16. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 227–246 (1972).
  17. H. Akahori, “Spectrum leveling by an iterative algorithm with a dummy area for synthesizing the kinoform,” Appl. Opt. 25, 802–811 (1986). [CrossRef] [PubMed]
  18. F. Wyrowski and O. Bryngdahl, “Digital holography as part of diffractive optics,” Rep. Prog. Phys. 54, 1481– 1571 (1991). [CrossRef]
  19. H. Kim, B. Yang, and B. Lee, “Iterative fourier transform algorithm with regularization for the optimal design of diffractive optical elements,” J. Opt. Soc. Am. A 21, 2353–2365 (2004). [CrossRef]
  20. A. Georgiou, J. Christmas, N. Collings, J. Moore, and W. A. Crossland, “Aspects of hologram calculation for video frames,” J. Opt. A Pure Appl. Opt. 10, 035302 (2008). [CrossRef]
  21. D. Engström, A. Frank, J. Backsten, M. Goksör, and J. Bengtsson, “Grid-free 3d multiple spot generation with an efficient single-plane fft-based algorithm,” Opt. Express 17, 9989–10000 (2009). [CrossRef] [PubMed]
  22. A. Georgiou, “Noise formation in fourier phase-only holograms,” J. Opt. Soc. Am. B 27, 2677–2686 (2010). [CrossRef]
  23. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, USA, 1996).
  24. R. Riesenberg, M. Kanka, and J. Bergmann, “Coherent light microscopy with a multi-spot source,” T. Wilson ed., Proc. SPIE6630, 66300I (2007). [CrossRef]
  25. C. Graulig and R. Riesenberg, “Lens-less imaging of pollen grains,” in Proceedings of AMA OPTO 2008, 109– 114 (2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited