OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 11 — Oct. 31, 2012

Magnetic interaction in all silicon waveguide spherical coupler device

Lei Shi and Francisco Meseguer  »View Author Affiliations


Optics Express, Vol. 20, Issue 20, pp. 22616-22626 (2012)
http://dx.doi.org/10.1364/OE.20.022616


View Full Text Article

Enhanced HTML    Acrobat PDF (1772 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The magnetic field component of light in dielectric materials generally plays a negligible role at optical frequency values. However, it is a key component of metal based metamaterials. Here we report on the dominant role of the magnetic interaction in a dielectric spherical silicon nanocavity coupled to a silicon waveguide. The analytical method, as well as the finite difference time domain (FDTD) simulation, show a three dimensional (3D) magnetic trap effect when the magnetic like Mie resonances of the nanocavity are excited.

© 2012 OSA

OCIS Codes
(290.4020) Scattering : Mie theory
(160.3918) Materials : Metamaterials
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: April 3, 2012
Revised Manuscript: June 18, 2012
Manuscript Accepted: June 29, 2012
Published: September 19, 2012

Virtual Issues
Vol. 7, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Lei Shi and Francisco Meseguer, "Magnetic interaction in all silicon waveguide spherical coupler device," Opt. Express 20, 22616-22626 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-20-22616


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970). [CrossRef]
  2. A. Ashkin and J. M. Dziedzic, “Observation of resonances in the radiation pressure on dielectric spheres,” Phys. Rev. Lett.38(23), 1351–1354 (1977). [CrossRef]
  3. S. Chu, “Noble lecture: the manipulation of neutral particles,” Rev. Mod. Phys.70(3), 685–706 (1998). [CrossRef]
  4. D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 21–27 (2006). [CrossRef] [PubMed]
  5. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011). [CrossRef]
  6. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A.94(10), 4853–4860 (1997). [CrossRef] [PubMed]
  7. F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. Photonics5(6), 318–321 (2011). [CrossRef] [PubMed]
  8. S. Chu, “Laser manipulation of atoms and particles,” Science253(5022), 861–866 (1991). [CrossRef] [PubMed]
  9. W. Ketterle, “Nobel lecture: when atoms behave as waves: Bose-Einstein condensation and the atom laser,” Rev. Mod. Phys.74(4), 1131–1151 (2002). [CrossRef]
  10. I. Bloch, “Ultracold quantum gases in optical lattices,” Nat. Phys.1(1), 23–30 (2005). [CrossRef]
  11. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Wiley, 1984)
  12. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, Inc, 1962).
  13. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science305(5685), 788–792 (2004). [CrossRef] [PubMed]
  14. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–530 (2011).
  15. R. Merlin, “Metamaterials and the Landau-Lifshitz permeability argument: large permittivity begets high-frequency magnetism,” Proc. Natl. Acad. Sci. U.S.A.106(6), 1693–1698 (2009). [CrossRef] [PubMed]
  16. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the magnetic field of light at optical frequencies,” Science326(5952), 550–553 (2009). [CrossRef] [PubMed]
  17. S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, D. S. Wiersma, and M. Gurioli, “Magnetic imaging in photonic crystal microcavities,” Phys. Rev. Lett.105(12), 123902 (2010). [CrossRef] [PubMed]
  18. M. Burresi, T. Kampfrath, D. van Oosten, J. C. Prangsma, B. S. Song, S. Noda, and L. Kuipers, “Magnetic light-matter interactions in a photonic crystal nanocavity,” Phys. Rev. Lett.105(12), 123901 (2010). [CrossRef] [PubMed]
  19. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett.95(20), 203901 (2005). [CrossRef] [PubMed]
  20. A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature438(7066), 335–338 (2005). [CrossRef] [PubMed]
  21. R. Zhao, P. Tassin, T. Koschny, and C. M. Soukoulis, “Optical forces in nanowire pairs and metamaterials,” Opt. Express18(25), 25665–25676 (2010). [CrossRef] [PubMed]
  22. M. Lapine, I. V. Shadrivov, D. A. Powell, and Y. S. Kivshar, “Magnetoelastic metamaterials,” Nat. Mater.11(1), 30–33 (2011). [CrossRef] [PubMed]
  23. Y. Liu and X. Zhang, “Metamaterials: a new frontier of science and technology,” Chem. Soc. Rev.40(5), 2494–2507 (2011). [CrossRef] [PubMed]
  24. V. Garcés-Chávez, R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, “Extended organization of colloidal microparticles by surface plasmon polariton excitation,” Phys. Rev. B73(8), 085417 (2006). [CrossRef]
  25. S. O'Brien and J. B. Pendry, “Photonic band-gap effects and magnetic activity in dielectric composites,” J. Phys. Condens. Matter14(15), 4035–4044 (2002). [CrossRef]
  26. B. I. Popa and S. A. Cummer, “Compact dielectric particles as a building block for low-loss magnetic metamaterials,” Phys. Rev. Lett.100(20), 207401 (2008). [CrossRef] [PubMed]
  27. J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett.99(10), 107401 (2007). [CrossRef] [PubMed]
  28. M. Nieto-Vesperinas, R. Gomez-Medina, and J. J. Saenz, “Angle-suppressed scattering and optical forces on submicronmeter dielectric particles,” J. Opt. Soc. Am. A28(1), 54–60 (2011). [CrossRef]
  29. J. T. Harris, J. L. Hueso, and B. A. Korgel, “Hydrogenated Amorphous Silicon (a-Si:H) Colloids,” Chem. Mater.22(23), 6378–6383 (2010). [CrossRef]
  30. R. Fenollosa, F. Meseguer, and M. Tymczenko, “Silicon colloids: from microcavities to photonic sponges,” Adv. Mater. (Deerfield Beach Fla.)20(1), 95–98 (2008). [CrossRef]
  31. E. Xifré-Pérez, R. Fenollosa, and F. Meseguer, “Low order modes in microcavities based on silicon colloids,” Opt. Express19(4), 3455–3463 (2011). [CrossRef] [PubMed]
  32. E. Xifré-Pérez, J. D. Domenech, R. Fenollosa, P. Muñoz, J. Capmany, and F. Meseguer, “All silicon waveguide spherical microcavity coupler device,” Opt. Express19(4), 3185–3192 (2011). [CrossRef] [PubMed]
  33. P. C. Chaumet and A. Rahmani, “Electromagnetic force and torque on magnetic and negative-index scatterers,” Opt. Express17(4), 2224–2234 (2009). [CrossRef] [PubMed]
  34. M. Nieto-Vesperinas, J. J. Sáenz, R. Gómez-Medina, and L. Chantada, “Optical forces on small magnetodielectric particles,” Opt. Express18(11), 11428–11443 (2010). [CrossRef] [PubMed]
  35. R. Gómez-Medina, M. Nieto-Vesperinas, and J. J. Saenz, “Nonconservative electric and magnetic optical forces on submicron dielectric particles,” Phys. Rev. A83(3), 033825 (2011). [CrossRef]
  36. L. Shi, E. Xifré-Pérez, F. J. García de Abajo, and F. Meseguer, “Looking through the mirror: optical microcavity-mirror image photonic interaction,” Opt. Express20(10), 11247–11255 (2012). [CrossRef] [PubMed]
  37. D. Erickson, X. Serey, Y. F. Chen, and S. Mandal, “Nanomanipulation using near field photonics,” Lab Chip11(6), 995–1009 (2011). [CrossRef] [PubMed]
  38. S. Lin, E. Schonbrun, and K. Crozier, “Optical manipulation with planar silicon microring resonators,” Nano Lett.10(7), 2408–2411 (2010). [CrossRef] [PubMed]
  39. S. Mandal, X. Serey, and D. Erickson, “Nanomanipulation using silicon photonic crystal resonators,” Nano Lett.10(1), 99–104 (2010). [CrossRef] [PubMed]
  40. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Photonics3, 477–480 (2007).
  41. M. Greiner and S. Fölling, “Condensed-matter physics: optical lattices,” Nature453(7196), 736–738 (2008). [CrossRef] [PubMed]
  42. P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1990).
  43. J. A. Stratton, Electromagnetic Theory (The Maple Press Company, 1941)
  44. S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett.102(11), 113602 (2009). [CrossRef] [PubMed]
  45. T. Iida and H. Ishihara, “Theoretical study of the optical manipulation of semiconductor nanoparticles under an excitonic resonance condition,” Phys. Rev. Lett.90(5), 057403 (2003). [CrossRef] [PubMed]
  46. X. Yang, Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett.11(2), 321–328 (2011). [CrossRef] [PubMed]
  47. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2010).
  48. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited