OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 12 — Dec. 19, 2012

Fast, long-scan-range pump-probe measurement based on asynchronous sampling using a dual-wavelength mode-locked fiber laser

Xin Zhao, Zheng Zheng, Lei Liu, Qi Wang, Haiwei Chen, and Jiansheng Liu  »View Author Affiliations

Optics Express, Vol. 20, Issue 23, pp. 25584-25589 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1097 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A simple, fast and long-scan-range pump-probe scheme is experimentally demonstrated using a dual-wavelength passively mode-locked fiber laser. The pulse trains from the dual-wavelength laser have a small difference in their repetition frequencies inherently determined by the intracavity dispersion. This enables the realization of the asynchronous sampling scheme with a tens-of-nanosecond-long delay range and a picosecond scan step at a millisecond scan speed. Instead of two synchronized ultrafast lasers in the traditional asynchronous sampling scheme, just one fiber laser is needed in our scheme, which could significantly simplify the system setup.

© 2012 OSA

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(320.7090) Ultrafast optics : Ultrafast lasers
(320.7120) Ultrafast optics : Ultrafast phenomena

ToC Category:

Original Manuscript: June 25, 2012
Revised Manuscript: August 23, 2012
Manuscript Accepted: August 24, 2012
Published: October 26, 2012

Virtual Issues
Vol. 7, Iss. 12 Virtual Journal for Biomedical Optics

Xin Zhao, Zheng Zheng, Lei Liu, Qi Wang, Haiwei Chen, and Jiansheng Liu, "Fast, long-scan-range pump-probe measurement based on asynchronous sampling using a dual-wavelength mode-locked fiber laser," Opt. Express 20, 25584-25589 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Ippen and C. Shank, S. Shapiro ed. Ultrashort Light Pulses (Springer, 1984), vol. 18, pp. 83–122.
  2. P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phinney, and I. El-Kady, “Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning,” Nano Lett.11(1), 107–112 (2011). [CrossRef] [PubMed]
  3. F. Etzold, I. A. Howard, N. Forler, D. M. Cho, M. Meister, H. Mangold, J. Shu, M. R. Hansen, K. Müllen, and F. Laquai, “The effect of solvent additives on morphology and excited-state dynamics in pcpdtbt:pcbm photovoltaic blends,” J. Am. Chem. Soc.134(25), 10569–10583 (2012). [CrossRef] [PubMed]
  4. A. Schmidt, M. Chiesa, X. Chen, and G. Chen, “An optical pump-probe technique for measuring the thermal conductivity of liquids,” Rev. Sci. Instrum.79(6), 064902–064905 (2008). [CrossRef] [PubMed]
  5. M. J. Feldstein, P. Vohringer, and N. F. Scherer, “Rapid-scan pump-probe spectroscopy with high time and wave-number resolution: optical-Kerr-effect measurements of neat liquids,” J. Opt. Soc. Am. B12(8), 1500–1510 (1995). [CrossRef]
  6. A. Gambetta, G. Galzerano, A. G. Rozhin, A. C. Ferrari, R. Ramponi, P. Laporta, and M. Marangoni, “Sub-100 fs two-color pump-probe spectroscopy of single wall carbon nanotubes with a 100 MHz Er-fiber laser system,” Opt. Express16(16), 11727–11734 (2008). [CrossRef] [PubMed]
  7. J. Xu and X. C. Zhang, “Circular involute stage,” Opt. Lett.29(17), 2082–2084 (2004). [CrossRef] [PubMed]
  8. G. J. Kim, S. G. Jeon, J. I. Kim, and Y. S. Jin, “High speed scanning of terahertz pulse by a rotary optical delay line,” Rev. Sci. Instrum.79(10), 106102 (2008). [CrossRef] [PubMed]
  9. Y. S. Jin, S. G. Jeon, G. J. Kim, J. I. Kim, and C. H. Shon, “Fast scanning of a pulsed terahertz signal using an oscillating optical delay line,” Rev. Sci. Instrum.78(2), 023101 (2007). [CrossRef] [PubMed]
  10. N. Krumbholz, M. Schwerdtfeger, T. Hasek, B. Scherger, and M. Koch, “A fiberstretcher operating as an optical delay line in a fiber-coupled THz spectrometer,” in 33rd International Conference on Infrared, Millimeter and Terahertz Waves,2008 (IEEE, 2008), pp. 1–2.
  11. P. A. Elzinga, R. J. Kneisler, F. E. Lytle, Y. Jiang, G. B. King, and N. M. Laurendeau, “Pump/probe method for fast analysis of visible spectral signatures utilizing asynchronous optical sampling,” Appl. Opt.26(19), 4303–4309 (1987). [CrossRef] [PubMed]
  12. A. Bartels, F. Hudert, C. Janke, T. Dekorsy, and K. Kohler, “Femtosecond time-resolved optical pump-probe spectroscopy at kilohertz-scan-rates over nanosecond-time-delays without mechanical delay line,” Appl. Phys. Lett.88(4), 041117 (2006). [CrossRef]
  13. G. Klatt, R. Gebs, H. Schafer, M. Nagel, C. Janke, A. Bartels, and T. Dekorsy, “High-resolution terahertz spectrometer,” IEEE J. Sel. Top. Quantum Electron.17(1), 159–168 (2011). [CrossRef]
  14. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics3(6), 351–356 (2009). [CrossRef]
  15. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett.100(1), 013902 (2008). [CrossRef] [PubMed]
  16. T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “Optical sampling by laser cavity tuning,” Opt. Express18(2), 1613–1617 (2010). [CrossRef] [PubMed]
  17. R. Wilk, T. Hochrein, M. Koch, M. Mei, and R. Holzwarth, “Terahertz spectrometer operation by laser repetition frequency tuning,” J. Opt. Soc. Am. B28(4), 592–595 (2011). [CrossRef]
  18. V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self starting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett.28(15), 1391–1393 (1992). [CrossRef]
  19. H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express17(15), 12692–12697 (2009). [CrossRef] [PubMed]
  20. X. Zhao, Z. Zheng, L. Liu, Y. Liu, Y. Jiang, X. Yang, and J. Zhu, “Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on a single-wall carbon nanotube modelocker and intracavity loss tuning,” Opt. Express19(2), 1168–1173 (2011). [CrossRef] [PubMed]
  21. D. Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B39(4), 201–217 (1986). [CrossRef]
  22. H. J. S. Dorren, X. Yang, A. K. Mishra, Z. Li, H. Ju, H. de Waardt, G.-D. Khoe, T. Simoyama, H. Ishikawa, H. Kawashima, and T. Hasama, “All-optical logic based on ultrafast gain and index dynamics in a semiconductor optical amplifier,” IEEE J. Sel. Top. Quantum Electron.10(5), 1079–1092 (2004). [CrossRef]
  23. N. K. Dutta and Q. Wang, Semiconductor Optical Amplifier (World Scientific Publishing, 2006)
  24. X. Zhao, Z. Zheng, Y. Liu, J. Guan, L. Liu, and Y. Sun, “High-resolution absolute distance measurement using a dual-wavelength, dual-comb, femtosecond fiber laser,” in Conference on Lasers and Electro-Optics & Quantum Electronics and Laser Science Conference (2012), CM2J.4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited