OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 12 — Dec. 19, 2012

3D-resolved fluorescence and phosphorescence lifetime imaging using temporal focusing wide-field two-photon excitation

Heejin Choi, Dimitrios S. Tzeranis, Jae Won Cha, Philippe Clémenceau, Sander J. G. de Jong, Lambertus K. van Geest, Joong Ho Moon, Ioannis V. Yannas, and Peter T. C. So  »View Author Affiliations


Optics Express, Vol. 20, Issue 24, pp. 26219-26235 (2012)
http://dx.doi.org/10.1364/OE.20.026219


View Full Text Article

Enhanced HTML    Acrobat PDF (2444 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fluorescence and phosphorescence lifetime imaging are powerful techniques for studying intracellular protein interactions and for diagnosing tissue pathophysiology. While lifetime-resolved microscopy has long been in the repertoire of the biophotonics community, current implementations fall short in terms of simultaneously providing 3D resolution, high throughput, and good tissue penetration. This report describes a new highly efficient lifetime-resolved imaging method that combines temporal focusing wide-field multiphoton excitation and simultaneous acquisition of lifetime information in frequency domain using a nanosecond gated imager from a 3D-resolved plane. This approach is scalable allowing fast volumetric imaging limited only by the available laser peak power. The accuracy and performance of the proposed method is demonstrated in several imaging studies important for understanding peripheral nerve regeneration processes. Most importantly, the parallelism of this approach may enhance the imaging speed of long lifetime processes such as phosphorescence by several orders of magnitude.

© 2012 OSA

OCIS Codes
(110.6880) Imaging systems : Three-dimensional image acquisition
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(180.2520) Microscopy : Fluorescence microscopy
(180.6900) Microscopy : Three-dimensional microscopy

ToC Category:
Microscopy

History
Original Manuscript: September 17, 2012
Revised Manuscript: October 26, 2012
Manuscript Accepted: October 27, 2012
Published: November 6, 2012

Virtual Issues
Vol. 7, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Heejin Choi, Dimitrios S. Tzeranis, Jae Won Cha, Philippe Clémenceau, Sander J. G. de Jong, Lambertus K. van Geest, Joong Ho Moon, Ioannis V. Yannas, and Peter T. C. So, "3D-resolved fluorescence and phosphorescence lifetime imaging using temporal focusing wide-field two-photon excitation," Opt. Express 20, 26219-26235 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-24-26219


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. I. Bastiaens, P. J. Bonants, F. Müller, and A. J. Visser, “Time-resolved fluorescence spectroscopy of NADPH-cytochrome P-450 reductase: demonstration of energy transfer between the two prosthetic groups,” Biochemistry28(21), 8416–8425 (1989). [CrossRef] [PubMed]
  2. W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, and C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech.63(1), 58–66 (2004). [CrossRef] [PubMed]
  3. H. C. Gerritsen, J. M. Vroom, and C. J. de Grauw, “Combining two-photon excitation with fluorescence lifetime imaging,” IEEE Eng. Med. Biol. Mag.18(5), 31–36 (1999). [CrossRef] [PubMed]
  4. E. Gratton, S. Breusegem, J. Sutin, Q. Ruan, and N. Barry, “Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods,” J. Biomed. Opt.8(3), 381–390 (2003). [CrossRef] [PubMed]
  5. I. Gryczynski, A. Razynska, and J. R. Lakowicz, “Two-photon induced fluorescence of linear alkanes; a possible intrinsic lipid probe,” Biophys. Chem.57(2-3), 291–295 (1996). [CrossRef] [PubMed]
  6. K. König, P. T. So, W. W. Mantulin, B. J. Tromberg, and E. Gratton, “Two-photon excited lifetime imaging of autofluorescence in cells during UVA and NIR photostress,” J. Microsc.183(Pt 3), 197–204 (1996). [PubMed]
  7. J. R. Lakowicz, “Emerging applications of fluorescence spectroscopy to cellular imaging: lifetime imaging, metal-ligand probes, multi-photon excitation and light quenching,” Scanning Microsc. Suppl.10, 213–224 (1996). [PubMed]
  8. R. M. Clegg, A. I. Murchie, and D. M. Lilley, “The four-way DNA junction: a fluorescence resonance energy transfer study,” Braz. J. Med. Biol. Res.26(4), 405–416 (1993). [PubMed]
  9. A. A. Deniz, T. A. Laurence, G. S. Beligere, M. Dahan, A. B. Martin, D. S. Chemla, P. E. Dawson, P. G. Schultz, and S. Weiss, “Single-molecule protein folding: diffusion fluorescence resonance energy transfer studies of the denaturation of chymotrypsin inhibitor 2,” Proc. Natl. Acad. Sci. U.S.A.97(10), 5179–5184 (2000). [CrossRef] [PubMed]
  10. X. Zhuang and M. Rief, “Single-molecule folding,” Curr. Opin. Struct. Biol.13(1), 88–97 (2003). [CrossRef] [PubMed]
  11. K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech.70(5), 398–402 (2007). [CrossRef] [PubMed]
  12. E. Dimitrow, I. Riemann, A. Ehlers, M. J. Koehler, J. Norgauer, P. Elsner, K. König, and M. Kaatz, “Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis,” Exp. Dermatol.18(6), 509–515 (2009). [CrossRef] [PubMed]
  13. G. Helmlinger, F. Yuan, M. Dellian, and R. K. Jain, “Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation,” Nat. Med.3(2), 177–182 (1997). [CrossRef] [PubMed]
  14. I. P. Torres Filho, M. Leunig, F. Yuan, M. Intaglietta, and R. K. Jain, “Noninvasive measurement of microvascular and interstitial oxygen profiles in a human tumor in SCID mice,” Proc. Natl. Acad. Sci. U.S.A.91(6), 2081–2085 (1994). [CrossRef] [PubMed]
  15. L. S. Ziemer, W. M. Lee, S. A. Vinogradov, C. Sehgal, and D. F. Wilson, “Oxygen distribution in murine tumors: characterization using oxygen-dependent quenching of phosphorescence,” J. Appl. Physiol.98(4), 1503–1510 (2005). [CrossRef] [PubMed]
  16. A. L. Harris, “Hypoxia--a key regulatory factor in tumour growth,” Nat. Rev. Cancer2(1), 38–47 (2002). [CrossRef] [PubMed]
  17. E. K. Rofstad, “Microenvironment-induced cancer metastasis,” Int. J. Radiat. Biol.76(5), 589–605 (2000). [CrossRef] [PubMed]
  18. S. M. Evans and C. J. Koch, “Prognostic significance of tumor oxygenation in humans,” Cancer Lett.195(1), 1–16 (2003). [CrossRef] [PubMed]
  19. M. I. Koukourakis, A. Giatromanolaki, R. A. Brekken, E. Sivridis, K. C. Gatter, A. L. Harris, and E. H. Sage, “Enhanced expression of SPARC/osteonectin in the tumor-associated stroma of non-small cell lung cancer is correlated with markers of hypoxia/acidity and with poor prognosis of patients,” Cancer Res.63(17), 5376–5380 (2003). [PubMed]
  20. M. Weinmann, C. Belka, and L. Plasswilm, “Tumour hypoxia: impact on biology, prognosis and treatment of solid malignant tumours,” Onkologie27(1), 83–90 (2004). [CrossRef] [PubMed]
  21. J. M. Brown and A. J. Giaccia, “The unique physiology of solid tumors: opportunities (and problems) for cancer therapy,” Cancer Res.58(7), 1408–1416 (1998). [PubMed]
  22. I. F. Tannock and D. Rotin, “Acid pH in tumors and its potential for therapeutic exploitation,” Cancer Res.49(16), 4373–4384 (1989). [PubMed]
  23. S. Sakadzić, E. Roussakis, M. A. Yaseen, E. T. Mandeville, V. J. Srinivasan, K. Arai, S. Ruvinskaya, A. Devor, E. H. Lo, S. A. Vinogradov, and D. A. Boas, “Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue,” Nat. Methods7(9), 755–759 (2010). [CrossRef] [PubMed]
  24. Y. Wang, S. Hu, K. Maslov, Y. Zhang, Y. Xia, and L. V. Wang, “In vivo integrated photoacoustic and confocal microscopy of hemoglobin oxygen saturation and oxygen partial pressure,” Opt. Lett.36(7), 1029–1031 (2011). [CrossRef] [PubMed]
  25. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques, (Springer, Berlin, 2005).
  26. A. Periasamy and R. M. Clegg, eds., FLIM Microscopy in Biology and Medicine, (Chapman and Hall, Boca Raton, 2009).
  27. K. Suhling, J. Siegel, P. M. Lanigan, S. Lévêque-Fort, S. E. Webb, D. Phillips, D. M. Davis, and P. M. French, “Time-resolved fluorescence anisotropy imaging applied to live cells,” Opt. Lett.29(6), 584–586 (2004). [CrossRef] [PubMed]
  28. J. Requejo-Isidro, J. McGinty, I. Munro, D. S. Elson, N. P. Galletly, M. J. Lever, M. A. Neil, G. W. Stamp, P. M. French, P. A. Kellett, J. D. Hares, and A. K. Dymoke-Bradshaw, “High-speed wide-field time-gated endoscopic fluorescence-lifetime imaging,” Opt. Lett.29(19), 2249–2251 (2004). [CrossRef] [PubMed]
  29. D. M. Grant, D. S. Elson, D. Schimpf, C. Dunsby, J. Requejo-Isidro, E. Auksorius, I. Munro, M. A. Neil, P. M. French, E. Nye, G. Stamp, and P. Courtney, “Optically sectioned fluorescence lifetime imaging using a Nipkow disk microscope and a tunable ultrafast continuum excitation source,” Opt. Lett.30(24), 3353–3355 (2005). [CrossRef] [PubMed]
  30. J. McGinty, K. B. Tahir, R. Laine, C. B. Talbot, C. Dunsby, M. A. Neil, L. Quintana, J. Swoger, J. Sharpe, and P. M. French, “Fluorescence lifetime optical projection tomography,” J Biophotonics1(5), 390–394 (2008). [CrossRef] [PubMed]
  31. D. M. Owen, E. Auksorius, H. B. Manning, C. B. Talbot, P. A. de Beule, C. Dunsby, M. A. Neil, and P. M. French, “Excitation-resolved hyperspectral fluorescence lifetime imaging using a UV-extended supercontinuum source,” Opt. Lett.32(23), 3408–3410 (2007). [CrossRef] [PubMed]
  32. S. Kumar, C. Dunsby, P. A. De Beule, D. M. Owen, U. Anand, P. M. Lanigan, R. K. Benninger, D. M. Davis, M. A. Neil, P. Anand, C. Benham, A. Naylor, and P. M. French, “Multifocal multiphoton excitation and time correlated single photon counting detection for 3-D fluorescence lifetime imaging,” Opt. Express15(20), 12548–12561 (2007). [CrossRef] [PubMed]
  33. D. Magde, G. E. Rojas, and P. G. Seybold, “Solvent dependence of the fluorescence lifetimes of xanthene dyes,” Photochem. Photobiol.70(5), 737–744 (1999). [CrossRef]
  34. G. I. Redford and R. M. Clegg, “Polar plot representation for frequency-domain analysis of fluorescence lifetimes,” J. Fluoresc.15(5), 805–815 (2005). [CrossRef] [PubMed]
  35. M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis,” Biophys. J.94(2), L14–L16 (2008). [CrossRef] [PubMed]
  36. N. A. A. Rahim, W. McDaniel, K. Bardon, S. Srinivas, V. Vickerman, P. T. C. So, and J. H. Moon, “Conjugated polymer nanoparticles for two-photon imaging of endothelial cells in a tissue model,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3492–3496 (2009). [CrossRef]
  37. A. Nagy, J. Wu, and K. M. Berland, “Observation volumes and gamma-factors in two-photon fluorescence fluctuation spectroscopy,” Biophys. J.89(3), 2077–2090 (2005). [CrossRef] [PubMed]
  38. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990). [CrossRef] [PubMed]
  39. L. C. Cheng, C. Y. Chang, C. Y. Lin, K. C. Cho, W. C. Yen, N. S. Chang, C. Xu, C. Y. Dong, and S. J. Chen, “Spatiotemporal focusing-based widefield multiphoton microscopy for fast optical sectioning,” Opt. Express20(8), 8939–8948 (2012). [CrossRef] [PubMed]
  40. E. C. Soller, D. S. Tzeranis, K. Miu, P. T. So, and I. V. Yannas, “Common features of optimal collagen scaffolds that disrupt wound contraction and enhance regeneration both in peripheral nerves and in skin,” Biomaterials33(19), 4783–4791 (2012). [CrossRef] [PubMed]
  41. L. J. Chamberlain, I. V. Yannas, H. P. Hsu, G. Strichartz, and M. Spector, “Collagen-GAG substrate enhances the quality of nerve regeneration through collagen tubes up to level of autograft,” Exp. Neurol.154(2), 315–329 (1998). [CrossRef] [PubMed]
  42. I. V. Yannas, J. F. Burke, D. P. Orgill, and E. M. Skrabut, “Wound tissue can utilize a polymeric template to synthesize a functional extension of skin,” Science215(4529), 174–176 (1982). [CrossRef] [PubMed]
  43. I. V. Yannas, Tissue and Organ Regeneration in Adults, (Springer, New York, 2001).
  44. S. Pelet, M. J. Previte, L. H. Laiho, and P. T. So, “A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation,” Biophys. J.87(4), 2807–2817 (2004). [CrossRef] [PubMed]
  45. P. Walczysko, U. Kuhlicke, S. Knappe, C. Cordes, and T. R. Neu, “In situ activity of suspended and immobilized microbial communities as measured by fluorescence lifetime imaging,” Appl. Environ. Microbiol.74(1), 294–299 (2008). [CrossRef] [PubMed]
  46. J. M. Brown, “Tumor microenvironment and the response to anticancer therapy,” Cancer Biol. Ther.1(5), 448–458 (2002). [CrossRef] [PubMed]
  47. G. Mehta, K. Mehta, D. Sud, J. W. Song, T. Bersano-Begey, N. Futai, Y. S. Heo, M. A. Mycek, J. J. Linderman, and S. Takayama, “Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture,” Biomed. Microdevices9(2), 123–134 (2007). [CrossRef] [PubMed]
  48. D. Sud, G. Mehta, K. Mehta, J. Linderman, S. Takayama, and M. A. Mycek, “Optical imaging in microfluidic bioreactors enables oxygen monitoring for continuous cell culture,” J. Biomed. Opt.11(5), 050504 (2006). [CrossRef] [PubMed]
  49. D. Sud and M. A. Mycek, “Calibration and validation of an optical sensor for intracellular oxygen measurements,” J. Biomed. Opt.14(2), 020506 (2009). [CrossRef] [PubMed]
  50. D. Sud, W. Zhong, D. G. Beer, and M. A. Mycek, “Time-resolved optical imaging provides a molecular snapshot of altered metabolic function in living human cancer cell models,” Opt. Express14(10), 4412–4426 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (2009 KB)     
» Media 2: AVI (1671 KB)     
» Media 3: AVI (1414 KB)     
» Media 4: AVI (1390 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited