OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 12 — Dec. 19, 2012

Limits of 3D dipole localization and orientation estimation for single-molecule imaging: towards Green’s tensor engineering

Anurag Agrawal, Sean Quirin, Ginni Grover, and Rafael Piestun  »View Author Affiliations

Optics Express, Vol. 20, Issue 24, pp. 26667-26680 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2736 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The 3D orientation and location of individual molecules is an important marker for the local environment and the state of a molecule. Therefore dipole localization and orientation estimation is important for biological sensing and imaging. Precise dipole localization is also critical for superresolution imaging. We propose and analyze wide field microscope configurations to simultaneously measure these parameters for multiple fixed dipole emitters. Examination of the images of radiating dipoles reveals how information transfer and precise detection can be improved. We use an information theoretic analysis to quantify the performance limits of position and orientation estimation through comparison of the Cramer-Rao lower bounds in a photon limited environment. We show that bi-focal and double-helix polarization-sensitive systems are attractive candidates for simultaneously estimating the 3D dipole location and orientation.

© 2012 OSA

OCIS Codes
(180.6900) Microscopy : Three-dimensional microscopy
(110.1758) Imaging systems : Computational imaging
(110.3055) Imaging systems : Information theoretical analysis

ToC Category:

Original Manuscript: August 2, 2012
Revised Manuscript: October 8, 2012
Manuscript Accepted: November 1, 2012
Published: November 12, 2012

Virtual Issues
Vol. 7, Iss. 12 Virtual Journal for Biomedical Optics

Anurag Agrawal, Sean Quirin, Ginni Grover, and Rafael Piestun, "Limits of 3D dipole localization and orientation estimation for single-molecule imaging: towards Green’s tensor engineering," Opt. Express 20, 26667-26680 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. E. Moerner, “New directions in single-molecule imaging and analysis,” Proc. Natl. Acad. Sci. U.S.A.104(31), 12596–12602 (2007). [CrossRef] [PubMed]
  2. E. Toprak and P. R. Selvin, “New fluorescent tools for watching nanometer-scale conformational changes of single molecules,” Annu. Rev. Biophys. Biomol. Struct.36(1), 349–369 (2007). [CrossRef] [PubMed]
  3. B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science319(5864), 810–813 (2008). [CrossRef] [PubMed]
  4. S. R. P. Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun, and W. E. Moerner, “Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function,” Proc. Natl. Acad. Sci. U.S.A.106(9), 2995–2999 (2009). [CrossRef] [PubMed]
  5. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  6. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91(11), 4258–4272 (2006). [CrossRef] [PubMed]
  7. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods3(10), 793–796 (2006). [CrossRef] [PubMed]
  8. M. Böhmer and J. Enderlein, “Orientation imaging of single molecules by wide-field epifluorescence microscopy,” J. Opt. Soc. Am. B20(3), 554 (2003). [CrossRef]
  9. K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods7(5), 377–381 (2010). [CrossRef] [PubMed]
  10. M. A. Lieb, J. M. Zavislan, and L. Novotny, “Single-molecule orientations determined by direct emission pattern imaging,” J. Opt. Soc. Am. B21(6), 1210 (2004). [CrossRef]
  11. M. R. Foreman, C. M. Romero, and P. Török, “Determination of the three-dimensional orientation of single molecules,” Opt. Lett.33(9), 1020–1022 (2008). [CrossRef] [PubMed]
  12. M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf, “Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples,” Nat. Methods5(6), 527–529 (2008). [CrossRef] [PubMed]
  13. S. Ram, J. Chao, P. Prabhat, E. S. Ward, and R. J. Ober, “A novel approach to determining the three-dimensional location of microscopic objects with applications to 3D particle tracking,” Proc. SPIE6443, 64430D (2007). [CrossRef]
  14. S. R. P. Pavani, J. G. DeLuca, and R. Piestun, “Polarization sensitive, three-dimensional, single-molecule imaging of cells with a double-helix system,” Opt. Express17(22), 19644–19655 (2009). [CrossRef] [PubMed]
  15. G. Grover, S. Quirin, C. Fiedler, and R. Piestun, “Photon efficient double-helix PSF microscopy with application to 3D photo-activation localization imaging,” Biomed. Opt. Express2(11), 3010–3020 (2011). [CrossRef] [PubMed]
  16. G. Grover, S. R. P. Pavani, and R. Piestun, “Performance limits on three-dimensional particle localization in photon-limited microscopy,” Opt. Lett.35(19), 3306–3308 (2010). [CrossRef] [PubMed]
  17. F. Aguet, S. Geissbühler, I. Märki, T. Lasser, and M. Unser, “Super-resolution orientation estimation and localization of fluorescent dipoles using 3-D steerable filters,” Opt. Express17(8), 6829–6848 (2009). [CrossRef] [PubMed]
  18. S. Quirin, S. R. P. Pavani, and R. Piestun, “Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions,” Proc. Natl. Acad. Sci. U.S.A.109(3), 675–679 (2012). [CrossRef] [PubMed]
  19. D. Patra, I. Gregor, and J. Enderlein, “Image Analysis of Defocused Single-Molecule Images for Three-Dimensional Molecule Orientation Studies,” J. Phys. Chem. A108(33), 6836–6841 (2004). [CrossRef]
  20. A. P. Bartko and R. M. Dickson, “Imaging Three-Dimensional Single Molecule Orientations,” J. Phys. Chem. B103(51), 11237–11241 (1999). [CrossRef]
  21. J. Engelhardt, J. Keller, P. Hoyer, M. Reuss, T. Staudt, and S. W. Hell, “Molecular orientation affects localization accuracy in superresolution far-field fluorescence microscopy,” Nano Lett.11(1), 209–213 (2011). [CrossRef] [PubMed]
  22. J. Enderlein, E. Toprak, and P. R. Selvin, “Polarization effect on position accuracy of fluorophore localization,” Opt. Express14(18), 8111–8120 (2006). [CrossRef] [PubMed]
  23. S. Stallinga and B. Rieger, “Accuracy of the Gaussian Point Spread Function model in 2D localization microscopy,” Opt. Express18(24), 24461–24476 (2010). [CrossRef] [PubMed]
  24. E. Toprak, J. Enderlein, S. Syed, S. A. McKinney, R. G. Petschek, T. Ha, Y. E. Goldman, and P. R. Selvin, “Defocused orientation and position imaging (DOPI) of myosin V,” Proc. Natl. Acad. Sci. U.S.A.103(17), 6495–6499 (2006). [CrossRef] [PubMed]
  25. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006), Chap. 10.
  26. A. Agrawal, S. Quirin, G. Grover, and R. Piestun, “Limits of 3D Dipole Localization and Orientation Estimation with Application to Single-Molecule Imaging - OSA Technical Digest (CD),” in Computational Optical Sensing and Imaging (Optical Society of America, 2011), p. CWA4.
  27. M. R. Foreman and P. Török, “Fundamental limits in single-molecule orientation measurements,” New J. Phys.13(9), 093013 (2011). [CrossRef]
  28. S. M. Kay, Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory (v. 1) (Prentice Hall, 1993), Chap. 3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited