OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 1 — Feb. 4, 2013

Analytical and experimental determination of signal-to-noise ratio and figure of merit in three phase-contrast imaging techniques

P.C. Diemoz, A. Bravin, M. Langer, and P. Coan  »View Author Affiliations

Optics Express, Vol. 20, Issue 25, pp. 27670-27690 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1679 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a theoretical and experimental comparison of three X-ray phase-contrast techniques: propagation-based imaging, analyzer-based imaging and grating interferometry. The signal-to-noise ratio and the figure of merit are quantitatively compared for the three techniques on the same phantoms and using the same X-ray source and detector. Principal dependencies of the signal upon the numerous acquisition parameters, the spatial resolution and X-ray energy are discussed in detail. The sensitivity of each technique, in terms of the smallest detectable phase shift, is also evaluated.

© 2012 OSA

OCIS Codes
(100.2960) Image processing : Image analysis
(110.2990) Imaging systems : Image formation theory
(110.4980) Imaging systems : Partial coherence in imaging
(110.7440) Imaging systems : X-ray imaging

ToC Category:
Imaging Systems

Original Manuscript: July 10, 2012
Revised Manuscript: September 2, 2012
Manuscript Accepted: September 8, 2012
Published: November 29, 2012

Virtual Issues
Vol. 8, Iss. 1 Virtual Journal for Biomedical Optics

P.C. Diemoz, A. Bravin, M. Langer, and P. Coan, "Analytical and experimental determination of signal-to-noise ratio and figure of merit in three phase-contrast imaging techniques," Opt. Express 20, 27670-27690 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Momose, T. Takeda, Y. Itai, and K. Hirano, “Phase-contrast X-ray computed tomography for observing biological soft tissues,” Nat. Med.2(4), 473–475 (1996). [CrossRef] [PubMed]
  2. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibility of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum.66(12), 5486–5492 (1995). [CrossRef]
  3. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384(6607), 335–338 (1996). [CrossRef]
  4. T. Davis, D. Gao, T. Gureyev, A. Stevenson, and S. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard X-rays,” Nature373(6515), 595–598 (1995). [CrossRef]
  5. T. E. Gureyev and S. W. Wilkins, “Regimes of X-ray phase-contrast imaging with perfect crystals,” Nuovo Cim.19D, 545–552 (1997).
  6. D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol.42(11), 2015–2025 (1997). [CrossRef] [PubMed]
  7. C. David, B. Nöhammer, H. Solak, and E. Ziegler, “Differential X-ray phase contrast imaging using a shearing interferometer,” Appl. Phys. Lett.81(17), 3287–3289 (2002). [CrossRef]
  8. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express13(16), 6296–6304 (2005). [CrossRef] [PubMed]
  9. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nat. Phys.2(4), 258–261 (2006). [CrossRef]
  10. A. Olivo, K. Ignatyev, P. R. T. Munro, and R. D. Speller, “Noninterferometric phase-contrast images obtained with incoherent x-ray sources,” Appl. Opt.50(12), 1765–1769 (2011). [CrossRef] [PubMed]
  11. P. C. Diemoz, A. Bravin, and P. Coan, “Theoretical comparison of three X-ray phase-contrast imaging techniques: propagation-based imaging, analyzer-based imaging and grating interferometry,” Opt. Express20(3), 2789–2805 (2012). [CrossRef] [PubMed]
  12. M. R. Teague, “Irradiance moments - their propagation and use for unique retrieval of phase,” J. Opt. Soc. Am.72(9), 1199–1209 (1982). [CrossRef]
  13. T. E. Gureyev, Y. I. Nesterets, A. W. Stevenson, P. R. Miller, A. Pogany, and S. W. Wilkins, “Some simple rules for contrast, signal-to-noise and resolution in in-line x-ray phase-contrast imaging,” Opt. Express16(5), 3223–3241 (2008). [CrossRef] [PubMed]
  14. K. M. Pavlov, T. E. Gureyev, D. Paganin, Y. I. Nesterets, M. J. Morgan, and R. A. Lewis, “Linear systems with slowly varying transfer functions and their application to x-ray phase-contrast imaging,” J. Phys. D Appl. Phys.37(19), 2746–2750 (2004). [CrossRef]
  15. P. C. Diemoz, P. Coan, I. Zanette, A. Bravin, S. Lang, C. Glaser, and T. Weitkamp, “A simplified approach for computed tomography with an X-ray grating interferometer,” Opt. Express19(3), 1691–1698 (2011). [CrossRef] [PubMed]
  16. M. Bech, “X-ray imaging with a grating interferometer,” PhD Thesis, University of Copenhagen (2009).
  17. M. Sanchez del Rio, C. Ferrero, and V. Mocella, “Computer simulations of bent perfect crystal diffraction profiles,” Proc. SPIE3151, 312–323 (1997), http://www.esrf.eu/UsersAndScience/Experiments/TBS/ SciSoft/xop2.3 . [CrossRef]
  18. W. Yashiro, Y. Takeda, and A. Momose, “Efficiency of capturing a phase image using cone-beam x-ray Talbot interferometry,” J. Opt. Soc. Am. A25(8), 2025–2039 (2008). [CrossRef] [PubMed]
  19. V. Revol, C. Kottler, R. Kaufmann, U. Straumann, and C. Urban, “Noise analysis of grating-based x-ray differential phase contrast imaging,” Rev. Sci. Instrum.81(7), 073709 (2010). [CrossRef] [PubMed]
  20. P. Modregger, B. R. Pinzer, T. Thüring, S. Rutishauser, C. David, and M. Stampanoni, “Sensitivity of X-ray grating interferometry,” Opt. Express19(19), 18324–18338 (2011). [CrossRef] [PubMed]
  21. P. Coan, A. Peterzol, S. Fiedler, C. Ponchut, J. C. Labiche, and A. Bravin, “Evaluation of imaging performance of a taper optics CCD ҅FReLoN’ camera designed for medical imaging,” J. Synchrotron Radiat.13(3), 260–270 (2006). [CrossRef] [PubMed]
  22. B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92,” At. Data Nucl. Data Tables54(2), 181–342 (1993). [CrossRef]
  23. T. Matsushita and H. Hashizume, “X-Ray monochromators,” in Handbook on Synchrotron Radiation, E. Koch, ed. (North Holland Publishing Company, New York, 1983), pp. 261–314.
  24. P. Coan, E. Pagot, S. Fiedler, P. Cloetens, J. Baruchel, and A. Bravin, “Phase-contrast X-ray imaging combining free space propagation and Bragg diffraction,” J. Synchrotron Radiat.12(2), 241–245 (2005). [CrossRef] [PubMed]
  25. E. Pagot, S. Fiedler, P. Cloetens, A. Bravin, P. Coan, K. Fezzaa, J. Baruchel, J. Härtwig, K. von Smitten, M. Leidenius, M. L. Karjalainen-Lindsberg, and J. Keyriläinen, “Quantitative comparison between two phase contrast techniques: Diffraction Enhanced Imaging and Phase Propagation Imaging,” Phys. Med. Biol.50(4), 709–724 (2005). [CrossRef] [PubMed]
  26. D. Shimao, H. Sugiyama, T. Kunisada, and M. Ando, “Articular cartilage depicted at optimized angular position of Laue angular analyzer by X-ray dark-field imaging,” Appl. Radiat. Isot.64(8), 868–874 (2006). [CrossRef] [PubMed]
  27. M. J. Kitchen, D. M. Paganin, K. Uesugi, B. J. Allison, R. A. Lewis, S. B. Hooper, and K. M. Pavlov, “Phase contrast image segmentation using a Laue analyser crystal,” Phys. Med. Biol.56(3), 515–534 (2011). [CrossRef] [PubMed]
  28. Y. I. Nesterets, P. Coan, T. E. Gureyev, A. Bravin, P. Cloetens, and S. W. Wilkins, “On qualitative and quantitative analysis in analyser-based imaging,” Acta Crystallogr. A62(4), 296–308 (2006). [CrossRef] [PubMed]
  29. E. Pagot, “Quantitative comparison between two phase contrast techniques for mammography,” PhD Thesis, Université Joseph Fourier, Grenoble (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited