OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 1 — Feb. 4, 2013

Spatiotemporal focusing in opaque scattering media by wave front shaping with nonlinear feedback

Jochen Aulbach, Bergin Gjonaj, Patrick Johnson, and Ad Lagendijk  »View Author Affiliations

Optics Express, Vol. 20, Issue 28, pp. 29237-29251 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1952 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally demonstrate spatiotemporal focusing of light on single nanocrystals embedded inside a strongly scattering medium. Our approach is based on spatial wave front shaping of short pulses, using second harmonic generation inside the target nanocrystals as the feedback signal. We successfully develop a model both for the achieved pulse duration as well as the observed enhancement of the feedback signal. The approach enables exciting opportunities for studies of light propagation in the presence of strong scattering as well as for applications in imaging, micro- and nanomanipulation, coherent control and spectroscopy in complex media.

© 2012 OSA

OCIS Codes
(030.6600) Coherence and statistical optics : Statistical optics
(110.7050) Imaging systems : Turbid media
(190.3970) Nonlinear optics : Microparticle nonlinear optics
(290.4210) Scattering : Multiple scattering

ToC Category:

Original Manuscript: October 12, 2012
Revised Manuscript: December 4, 2012
Manuscript Accepted: December 5, 2012
Published: December 17, 2012

Virtual Issues
Vol. 8, Iss. 1 Virtual Journal for Biomedical Optics

Jochen Aulbach, Bergin Gjonaj, Patrick Johnson, and Ad Lagendijk, "Spatiotemporal focusing in opaque scattering media by wave front shaping with nonlinear feedback," Opt. Express 20, 29237-29251 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett.32(16), 2309–2311 (2007). [CrossRef] [PubMed]
  2. T. Cizmar, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4, 388–394 (2010). [CrossRef]
  3. E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett.106, 193905 (2011). [CrossRef] [PubMed]
  4. I. M. Vellekoop, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Demixing light paths inside disordered metamaterials, ” Opt. Express16(1), 67–80 (2008). [CrossRef] [PubMed]
  5. M. Fink, “Time reversed acoustics,” Phys. Today50(3), 34–40 (1997). [CrossRef]
  6. G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science315, 1120–1122 (2007). [CrossRef] [PubMed]
  7. M. Cui and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express18(4), 3444–3455 (2010). [CrossRef] [PubMed]
  8. C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Opt. Express18(12), 12283–12290 (2010). [CrossRef] [PubMed]
  9. I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett.101, 081108 (2012). [CrossRef]
  10. J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett.106, 103901 (2011). [CrossRef] [PubMed]
  11. O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics5, 372–377 (2011). [CrossRef]
  12. J. Aulbach, A. Bretagne, M. Fink, M. Tanter, and A. Tourin, “Optimal spatiotemporal focusing through complex scattering media,” Phys. Rev. E85, 016605 (2012). [CrossRef]
  13. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Meth.2, 932–940 (2005). [CrossRef]
  14. P. C. Ray, “Size and shape dependent second order nonlinear optical properties of nanomaterials and its application in biological and chemical sensing,” Chem. Rev.110(9), 5332–5365 (2010). [CrossRef] [PubMed]
  15. C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Second harmonic generation from nanocrystals under linearly and circularly polarized excitations,” Opt. Express18, 11917–11932 (2010). [CrossRef] [PubMed]
  16. L. L. Xuan, S. Brasselet, F. Treussart, J.-F. Roch, F. Marquier, D. Chauvat, S. Perruchas, C. Tard, and T. Gacoin, “Balanced homodyne detection of second-harmonic generation from isolated subwavelength emitters,” Appl. Phys. Lett.89(12), 121118 (2006). [CrossRef]
  17. R. Grange, T. Lanvin, C. L. Hsieh, Y. Pu, and D. Psaltis, “Imaging with second-harmonic radiation probes in living tissue,” Biomed. Opt. Express2(9), 2532–2539 (2011). [CrossRef] [PubMed]
  18. C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging,” Opt. Express17(4), 2880–2891 (2009). [CrossRef] [PubMed]
  19. J. C. Diels, J. J. Fontaine, I. C. McMichael, and F. Simoni, “Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy,” Appl. Opt.24(9), 1270–1282 (1985). [CrossRef] [PubMed]
  20. D. J. Thouless, “Maximum metallic resistance in thin wires,” Phys. Rev. Lett.39, 1167–1169 (1977). [CrossRef]
  21. R. Landauer and M. Buttiker, “Diffusive traversal time: effective area in magnetically induced interference,” Phys. Rev. B36, 6255–6260 (1987). [CrossRef]
  22. I. M. Vellekoop, P. Lodahl, and A. Lagendijk, “Determination of the diffusion constant using phase-sensitive measurements,” Phys. Rev. E71, 056604 (2005). [CrossRef]
  23. R. W. Boyd, Nonlinear Optics (Academic Press, 2008).
  24. S. Roke and G. Gonella, “Nonlinear light scattering and spectroscopy of particles and droplets in liquids,” Annu. Rev. Phys. Chem.63, 353–378 (2012) [CrossRef] [PubMed]
  25. E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Optimal concentration of light in turbid materials,” J. Opt. Soc. Am. B28(5), 1200–1203 (2011). [CrossRef]
  26. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A253, 358–379 (1959). [CrossRef]
  27. J. W. Goodman, Statistical Optics (Wiley, 2000).
  28. I. M. Vellekoop and A.P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun.281(11), 3071–3080 (2008). [CrossRef]
  29. D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, and R. Piestun, “Genetic algorithm optimization for focusing through turbid media in noisy environments,” Opt. Express20(5), 4840–4849 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited