OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 1 — Feb. 4, 2013

Rotating-polarization CARS microscopy: combining chemical and molecular orientation sensitivity

Giuseppe de Vito, Angelo Bifone, and Vincenzo Piazza  »View Author Affiliations


Optics Express, Vol. 20, Issue 28, pp. 29369-29377 (2012)
http://dx.doi.org/10.1364/OE.20.029369


View Full Text Article

Enhanced HTML    Acrobat PDF (1460 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Coherent Anti-Stokes Raman Spectroscopy (CARS) is a non-linear process in which the energy difference of a pair of incoming photons matches the energy of the vibrational mode of a molecular bond of interest. This phonon population is coherently probed by a third photon and anti-Stokes radiation is emitted. Here a novel approach to CARS microscopy is presented yielding the intensity of the anti-Stokes emission, the directionality the molecular bonds of interest, and their average orientation. Myelinated axons in fixed mouse-brain slices have been imaged by RP-CARS. We were able to detect the local average direction of the acylic chains of membrane phospholipids and their spatial anisotropy. This novel method may impact the study of healthy brain circuitry as well as demyelinating diseases or other pathological states associated with altered neural connectivity.

© 2012 OSA

OCIS Codes
(180.6900) Microscopy : Three-dimensional microscopy
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(180.4315) Microscopy : Nonlinear microscopy
(180.5655) Microscopy : Raman microscopy

ToC Category:
Microscopy

History
Original Manuscript: October 26, 2012
Revised Manuscript: November 30, 2012
Manuscript Accepted: November 30, 2012
Published: December 18, 2012

Virtual Issues
Vol. 8, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Giuseppe de Vito, Angelo Bifone, and Vincenzo Piazza, "Rotating-polarization CARS microscopy: combining chemical and molecular orientation sensitivity," Opt. Express 20, 29369-29377 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-28-29369


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Maker and R. Terhune, “Study of optical effects due to an induced polarization third order in the electric field strength,” Phys. Rev.137(3A), A801–A818 (1965). [CrossRef]
  2. J. X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B108(3), 827–840 (2004). [CrossRef]
  3. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A.102(46), 16807–16812 (2005). [CrossRef] [PubMed]
  4. C. L. Evans and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif)1(1), 883–909 (2008). [CrossRef] [PubMed]
  5. J. X. Cheng, S. Pautot, D. A. Weitz, and X. S. Xie, “Ordering of water molecules between phospholipid bilayers visualized by coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A.100(17), 9826–9830 (2003). [CrossRef] [PubMed]
  6. A. V. Kachynski, A. N. Kuzmin, P. N. Prasad, and I. I. Smalyukh, “Coherent anti-Stokes Raman scattering polarized microscopy of three-dimensional director structures in liquid crystals,” Appl. Phys. Lett.91(15), 151905 (2007). [CrossRef]
  7. F. Munhoz, H. Rigneault, and S. Brasselet, “Polarization-resolved four-wave mixing microscopy for structural imaging in thick tissues,” J. Opt. Soc. Am. B29(6), 1541–1550 (2012). [CrossRef]
  8. J. X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.26(17), 1341–1343 (2001). [CrossRef] [PubMed]
  9. A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett.80(9), 1505–1507 (2002). [CrossRef]
  10. Y. Fu, T. B. Huff, H.-W. Wang, J.-X. Cheng, and H. Wang, “Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy,” Opt. Express16(24), 19396–19409 (2008). [CrossRef] [PubMed]
  11. E. Bélanger, S. Bégin, S. Laffray, Y. De Koninck, R. Vallée, and D. Côté, “Quantitative myelin imaging with coherent anti-Stokes Raman scattering microscopy: alleviating the excitation polarization dependence with circularly polarized laser beams,” Opt. Express17(21), 18419–18432 (2009). [CrossRef] [PubMed]
  12. H. Wang, Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, “Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J.89(1), 581–591 (2005). [CrossRef] [PubMed]
  13. C. Shang and H. Hsu, “The spatial symmetric forms of third-order nonlinear susceptibility,” IEEE J. Quantum Electron.23(2), 177–179 (1987). [CrossRef]
  14. R. W. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Prog. Quantum Electron.5, 1–68 (1979). [CrossRef]
  15. M. Axer, K. Amunts, D. Grässel, C. Palm, J. Dammers, H. Axer, U. Pietrzyk, and K. Zilles, “A novel approach to the human connectome: ultra-high resolution mapping of fiber tracts in the brain,” Neuroimage54(2), 1091–1101 (2011). [CrossRef] [PubMed]
  16. M. D. Budde and J. A. Frank, “Examining brain microstructure using structure tensor analysis of histological sections,” Neuroimage63(1), 1–10 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited