OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 1 — Feb. 4, 2013

Numerical investigation of lens based setup for depth sensitive diffuse reflectance measurements in an epithelial cancer model

Caigang Zhu and Quan Liu  »View Author Affiliations


Optics Express, Vol. 20, Issue 28, pp. 29807-29822 (2012)
http://dx.doi.org/10.1364/OE.20.029807


View Full Text Article

Enhanced HTML    Acrobat PDF (1109 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Lens based setups have been explored for non-contact diffuse reflectance measurements to reduce the uncertainty due to inconsistent probe-sample pressure in the past years. However, there have been no reports describing the details of Monte Carlo modeling of lens based non-contact setup for depth sensitive diffuse reflectance measurements to the best of our knowledge. In this study, we first presented a flexible Monte Carlo method to model non-contact diffuse reflectance measurements in a lens based setup. Then this method was used to simulate diffuse reflectance measurements from a squamous cell carcinoma (SCC) tissue model in the cone shell, cone and hybrid configurations, in which the cone shell configuration has not been previously proposed in optical spectroscopy. Depth sensitive measurements were achieved by adjusting the following two parameters: (1) the depth of focal point of the imaging lens in the SCC model; and (2) the cone radius in the cone configuration or the ring radius in the cone shell configuration. It was demonstrated that the cone shell and the hybrid configurations in general have better depth sensitivity to the tumor and the stroma than the more commonly used cone configuration for diffuse reflectance measurements in the SCC model.

© 2012 OSA

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: October 22, 2012
Revised Manuscript: December 3, 2012
Manuscript Accepted: December 12, 2012
Published: December 21, 2012

Virtual Issues
Vol. 8, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Caigang Zhu and Quan Liu, "Numerical investigation of lens based setup for depth sensitive diffuse reflectance measurements in an epithelial cancer model," Opt. Express 20, 29807-29822 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-28-29807


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Zonios, L. T. Perelman, V. M. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt.38(31), 6628–6637 (1999). [CrossRef] [PubMed]
  2. D. Arifler, R. A. Schwarz, S. K. Chang, and R. Richards-Kortum, “Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma,” Appl. Opt.44(20), 4291–4305 (2005). [CrossRef] [PubMed]
  3. H. W. Wang, J. K. Jiang, C. H. Lin, J. K. Lin, G. J. Huang, and J. S. Yu, “Diffuse reflectance spectroscopy detects increased hemoglobin concentration and decreased oxygenation during colon carcinogenesis from normal to malignant tumors,” Opt. Express17(4), 2805–2817 (2009). [CrossRef] [PubMed]
  4. U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt.8(1), 121–147 (2003). [CrossRef] [PubMed]
  5. Q. Liu, “Role of optical spectroscopy using endogenous contrasts in clinical cancer diagnosis,” World J Clin Oncol2(1), 50–63 (2011). [CrossRef] [PubMed]
  6. Y. L. Ti and W. C. Lin, “Effects of probe contact pressure on in vivo optical spectroscopy,” Opt. Express16(6), 4250–4262 (2008). [CrossRef] [PubMed]
  7. R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt.13(1), 010502 (2008). [CrossRef] [PubMed]
  8. J. Delgado Atencio, E. Orozco Guillén, S. Vázquez y Montiel, M. Cunill Rodríguez, J. Castro Ramos, J. Gutiérrez, and F. Martínez, “Influence of probe pressure on human skin diffuse reflectance spectroscopy measurements,” Opt. Mem. Neural. Networks18(1), 6–14 (2009). [CrossRef]
  9. L. A. Lim, B. Nichols, N. Rajaram, and J. W. Tunnell, “Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements,” J. Biomed. Opt.16(1), 011012 (2011). [CrossRef] [PubMed]
  10. S. Andree, C. Reble, J. Helfmann, I. Gersonde, and G. Illing, “Evaluation of a novel noncontact spectrally and spatially resolved reflectance setup with continuously variable source-detector separation using silicone phantoms,” J. Biomed. Opt.15(6), 067009 (2010). [CrossRef] [PubMed]
  11. S. F. Bish, N. Rajaram, B. Nichols, and J. W. Tunnell, “Development of a noncontact diffuse optical spectroscopy probe for measuring tissue optical properties,” J. Biomed. Opt.16(12), 120505 (2011). [CrossRef] [PubMed]
  12. M. Mazurenka, A. Jelzow, H. Wabnitz, D. Contini, L. Spinelli, A. Pifferi, R. Cubeddu, A. D. Mora, A. Tosi, F. Zappa, and R. Macdonald, “Non-contact time-resolved diffuse reflectance imaging at null source-detector separation,” Opt. Express20(1), 283–290 (2012). [CrossRef] [PubMed]
  13. A. J. Radosevich, N. N. Mutyal, V. Turzhitsky, J. D. Rogers, J. Yi, A. Taflove, and V. Backman, “Measurement of the spatial backscattering impulse-response at short length scales with polarized enhanced backscattering,” Opt. Lett.36(24), 4737–4739 (2011). [CrossRef] [PubMed]
  14. A. Hielscher, A. Eick, J. Mourant, D. Shen, J. Freyer, and I. Bigio, “Diffuse backscattering Mueller matricesof highly scattering media,” Opt. Express1(13), 441–453 (1997). [CrossRef] [PubMed]
  15. E. Vitkin, V. Turzhitsky, L. Qiu, L. Guo, I. Itzkan, E. B. Hanlon, and L. T. Perelman, “Photon diffusion near the point-of-entry in anisotropically scattering turbid media,” Nat Commun2, 587 (2011). [CrossRef] [PubMed]
  16. V. Turzhitsky, N. N. Mutyal, A. J. Radosevich, and V. Backman, “Multiple scattering model for the penetration depth of low-coherence enhanced backscattering,” J. Biomed. Opt.16(9), 097006 (2011). [CrossRef] [PubMed]
  17. L. V. Wang and G. Liang, “Absorption distribution of an optical beam focused into a turbid medium,” Appl. Opt.38(22), 4951–4958 (1999). [CrossRef] [PubMed]
  18. L. H. Wang, S. L. Jacques, and L. Q. Zheng, “Mcml - Monte-Carlo Modeling of Light Transport in Multilayered Tissues,” Comput Meth Prog Bio47(2), 131–146 (1995). [CrossRef]
  19. B. L. Allen-Hoffmann, S. J. Schlosser, C. A. R. Ivarie, C. A. Sattler, L. F. Meisner, and S. L. O’Connor, “Normal growth and differentiation in a spontaneously immortalized near-diploid human keratinocyte cell line, NIKS,” J. Invest. Dermatol.114(3), 444–455 (2000). [CrossRef] [PubMed]
  20. C. G. Zhu and Q. Liu, “Validity of the semi-infinite tumor model in diffuse reflectance spectroscopy for epithelial cancer diagnosis: a Monte Carlo study,” Opt. Express19(18), 17799–17812 (2011). [CrossRef] [PubMed]
  21. D. C. Walker, B. H. Brown, A. D. Blackett, J. Tidy, and R. H. Smallwood, “A study of the morphological parameters of cervical squamous epithelium,” Physiol. Meas.24(1), 121–135 (2003). [CrossRef] [PubMed]
  22. C. Kortun, Y. R. Hijazi, and D. Arifler, “Combined Monte Carlo and finite-difference time-domain modeling for biophotonic analysis: implications on reflectance-based diagnosis of epithelial precancer,” J. Biomed. Opt.13(3), 034014 (2008). [CrossRef] [PubMed]
  23. S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt.9(3), 511–522 (2004). [CrossRef] [PubMed]
  24. K. B. Sung and H. H. Chen, “Enhancing the sensitivity to scattering coefficient of the epithelium in a two-layered tissue model by oblique optical fibers: Monte Carlo study,” J. Biomed. Opt.17(10), 107003 (2012). [CrossRef] [PubMed]
  25. Q. Liu and N. Ramanujam, “Experimental proof of the feasibility of using an angled fiber-optic probe for depth-sensitive fluorescence spectroscopy of turbid media,” Opt. Lett.29(17), 2034–2036 (2004). [CrossRef] [PubMed]
  26. T. J. Pfefer, A. Agrawal, and R. A. Drezek, “Oblique-incidence illumination and collection for depth-selective fluorescence spectroscopy,” J. Biomed. Opt.10(4), 044016 (2005). [CrossRef] [PubMed]
  27. Q. Liu and N. Ramanujam, “Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra,” Appl. Opt.45(19), 4776–4790 (2006). [CrossRef] [PubMed]
  28. R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt.6(4), 385–396 (2001). [CrossRef] [PubMed]
  29. J. Qu, C. Macaulay, S. Lam, and B. Palcic, “Optical properties of normal and carcinomatous bronchial tissue,” Appl. Opt.33(31), 7397–7405 (1994). [CrossRef] [PubMed]
  30. A. M. J. Wang, J. E. Bender, J. Pfefer, U. Utzinger, and R. A. Drezek, “Depth-sensitive reflectance measurements using obliquely oriented fiber probes,” J. Biomed. Opt.10(4), 044017 (2005). [CrossRef] [PubMed]
  31. R. A. Schwarz, W. Gao, D. Daye, M. D. Williams, R. Richards-Kortum, and A. M. Gillenwater, “Autofluorescence and diffuse reflectance spectroscopy of oral epithelial tissue using a depth-sensitive fiber-optic probe,” Appl. Opt.47(6), 825–834 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited