OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 6 — May. 25, 2012

Low-threshold supercontinuum generation in semiconductor nanoribbons by continuous-wave pumping

Fuxing Gu, Huakang Yu, Wei Fang, and Limin Tong  »View Author Affiliations


Optics Express, Vol. 20, Issue 8, pp. 8667-8674 (2012)
http://dx.doi.org/10.1364/OE.20.008667


View Full Text Article

Enhanced HTML    Acrobat PDF (1407 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the first observation of supercontinuum (SC) generation in single semiconductor nanoribbons (NRs). By launching a continuous wave (CW) 532-nm pump light along a 200-μm-length CdS NR for waveguiding excitation, SC generation is realized with a threshold down to sub-milliwatt level, which is ~3 orders lower compared with previous CW-pumped SC generated in glass fibers. The low threshold is benefitted from the favorable material properties and waveguide geometries including high Raman gains, strong light confinement, more optical guided modes and phonon modes. Our work paves the way to low-threshold nanoscale SC sources and may find widespread applications ranging from spectroscopic analysis and biological imaging to material research.

© 2012 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(290.5910) Scattering : Scattering, stimulated Raman
(300.2570) Spectroscopy : Four-wave mixing
(050.6624) Diffraction and gratings : Subwavelength structures
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Ultrafast Optics

History
Original Manuscript: January 17, 2012
Revised Manuscript: March 22, 2012
Manuscript Accepted: March 25, 2012
Published: March 29, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Fuxing Gu, Huakang Yu, Wei Fang, and Limin Tong, "Low-threshold supercontinuum generation in semiconductor nanoribbons by continuous-wave pumping," Opt. Express 20, 8667-8674 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-8-8667


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. R. Shen, The Principle of Nonlinear Optics (Wiley, New York, 1984).
  2. R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press, Boston, 2003).
  3. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Elsevier, Singapore, 2007).
  4. J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics3(2), 85–90 (2009). [CrossRef]
  5. W. L. Smith, P. Liu, and N. Bloembergen, “Superbroadening in H2O and D2O by self-focused picosecond pulses from a YAlG:Nd laser,” Phys. Rev. A15(6), 2396–2403 (1977). [CrossRef]
  6. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000 Å via four-photon coupling in glass,” Phys. Rev. Lett.24(11), 584–587 (1970). [CrossRef]
  7. T. A. Birks, W. J. Wadsworth, and P. S. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett.25(19), 1415–1417 (2000). [CrossRef] [PubMed]
  8. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett.25(1), 25–27 (2000). [CrossRef] [PubMed]
  9. L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on microchip laser pumped microstructured fibre,” Electron. Lett.37(9), 558–560 (2001). [CrossRef]
  10. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B19(4), 753–764 (2002). [CrossRef]
  11. A. K. Abeeluck, C. Headley, and C. G. Jørgensen, “High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser,” Opt. Lett.29(18), 2163–2165 (2004). [CrossRef] [PubMed]
  12. N. A. Wolchover, F. Luan, A. K. George, J. C. Knight, and F. G. Omenetto, “High nonlinearity glass photonic crystal nanowires,” Opt. Express15(3), 829–833 (2007). [CrossRef] [PubMed]
  13. D.-I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, “Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires,” Opt. Lett.33(7), 660–662 (2008). [CrossRef] [PubMed]
  14. P. B. Corkum, P. P. Ho, R. R. Alfano, and J. T. Manassah, “Generation of infrared supercontinuum covering 3-14 microm in dielectrics and semiconductors,” Opt. Lett.10(12), 624–626 (1985). [CrossRef] [PubMed]
  15. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express15(25), 16604–16644 (2007). [CrossRef] [PubMed]
  16. Y. S. Kivshar, “Nonlinear optics: the next decade,” Opt. Express16(26), 22126–22128 (2008). [CrossRef] [PubMed]
  17. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, “Supercontinuum generation in submicron fibre waveguides,” Opt. Express12(13), 2864–2869 (2004). [CrossRef] [PubMed]
  18. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express16(2), 1300–1320 (2008). [CrossRef] [PubMed]
  19. S. Afshar V, W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett.34(22), 3577–3579 (2009). [CrossRef] [PubMed]
  20. J. Wu, A. K. Gupta, H. R. Gutierrez, and P. C. Eklund, “Cavity-enhanced stimulated Raman scattering from short GaP nanowires,” Nano Lett.9(9), 3252–3257 (2009). [CrossRef] [PubMed]
  21. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature447(7148), 1098–1101 (2007). [CrossRef] [PubMed]
  22. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express12(6), 1025–1035 (2004). [CrossRef] [PubMed]
  23. F. Biancalana, T. X. Tran, S. Stark, M. A. Schmidt, and P. St. J. Russell, “Emergence of geometrical optical nonlinearities in photonic crystal fiber nanowires,” Phys. Rev. Lett.105(9), 093904 (2010). [CrossRef] [PubMed]
  24. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-dimensional nanostructures: synthesis, characterization, and applications,” Adv. Mater. (Deerfield Beach Fla.)15(5), 353–389 (2003). [CrossRef]
  25. R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009). [CrossRef]
  26. A. Pan, D. Liu, R. Liu, F. Wang, X. Zhu, and B. Zou, “Optical waveguide through CdS nanoribbons,” Small1(10), 980–983 (2005). [CrossRef] [PubMed]
  27. R. Venugopal, P.-I. Lin, C.-C. Liu, and Y.-T. Chen, “Surface-enhanced raman scattering and polarized photoluminescence from catalytically grown CdSe nanobelts and sheets,” J. Am. Chem. Soc.127(32), 11262–11268 (2005). [CrossRef] [PubMed]
  28. E. D. Palik, Handbook of Optical Constants of Solids (New York, Academic, 1991).
  29. F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc.133(7), 2037–2039 (2011). [CrossRef] [PubMed]
  30. M. A. Foster, K. D. Moll, and A. L. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express12(13), 2880–2887 (2004). [CrossRef] [PubMed]
  31. K.-Y. Lee, J.-R. Lim, H. Rho, Y.-J. Choi, K. J. Choi, and J.-G. Park, “Evolution of optical phonons in CdS nanowires, nanobelts, and nanosheets,” Appl. Phys. Lett.91(20), 201901 (2007). [CrossRef]
  32. A. Pan, R. Liu, Q. Yang, Y. Zhu, G. Yang, B. Zou, and K. Chen, “Stimulated emissions in aligned CdS nanowires at room temperature,” J. Phys. Chem. B109(51), 24268–24272 (2005). [CrossRef] [PubMed]
  33. T. Zhai, X. Fang, L. Li, Y. Bando, and D. Golberg, “One-dimensional CdS nanostructures: synthesis, properties, and applications,” Nanoscale2(2), 168–187 (2010). [CrossRef] [PubMed]
  34. X. S. Zhao, J. Schroeder, P. D. Persans, and T. G. Bilodeau, “Resonant-Raman-scattering and photoluminescence studies in glass-composite and colloidal CdS,” Phys. Rev. B Condens. Matter43(15), 12580–12589 (1991). [CrossRef] [PubMed]
  35. Z. Zhang, M. Qiu, U. Andersson, and L. Tong, “Subwavelength-diameter silica wire for light in-coupling to silicon-based waveguide,” Chin. Opt. Lett.5, 577–579 (2007).
  36. F. Gu, L. Zhang, X. Yin, and L. Tong, “Polymer single-nanowire optical sensors,” Nano Lett.8(9), 2757–2761 (2008). [CrossRef] [PubMed]
  37. F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano4(9), 5332–5338 (2010). [CrossRef] [PubMed]
  38. H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Optical nonlinearities and photo-excited carrier lifetime in CdS at. 532 nm,” Opt. Commun.190(1-6), 351–356 (2001). [CrossRef]
  39. J. Puthussery, A. Lan, T. H. Kosel, and M. Kuno, “Band-filling of solution-synthesized CdS nanowires,” ACS Nano2(2), 357–367 (2008). [CrossRef] [PubMed]
  40. R. C. C. Leite, J. F. Scott, and T. C. Damen, “Multiple-phonon resonant Raman scattering in CdS,” Phys. Rev. Lett.22(15), 780–782 (1969). [CrossRef]
  41. Y. Zhang, H. Son, J. Zhang, J. Kong, and Z. J. Liu, “Laser-heating effect on Raman spectra of individual suspended single-walled carbon nanotubes,” PhysChemComm111, 1988–1992 (2007).
  42. J. B. Grun, A. K. McQuillan, and B. P. Stoicheff, “Intensity and gain measurements on the stimulated Raman emission in liquid O2 and N2,” Phys. Rev.180(1), 61–68 (1969). [CrossRef]
  43. F. Gu, P. Wang, H. Yu, B. Guo, and L. Tong, “Optical quenching of photoconductivity in CdSe single nanowires via waveguiding excitation,” Opt. Express19(11), 10880–10885 (2011). [CrossRef] [PubMed]
  44. F. Gu, L. Zhang, H. Yu, W. Fang, J. Bao, and L. Tong, “Large defect-induced sub-bandgap photoresponse in semiconductor nanowires via waveguiding excitation,” Nanotechnology22(42), 425201 (2011). [CrossRef] [PubMed]
  45. H. Haug and S. Schmitt-Rink, “Basic mechanisms of the optical nonlinearities of semiconductors near the band edge,” J. Opt. Soc. Am. B2(7), 1135–1142 (1985). [CrossRef]
  46. J. C. Knight and D. V. Skryabin, “Nonlinear waveguide optics and photonic crystal fibers,” Opt. Express15(23), 15365–15376 (2007). [CrossRef] [PubMed]
  47. X. Zhuang, C. Z. Ning, and A. Pan, “Composition and bandgap-graded semiconductor alloy nanowires,” Adv. Mater. (Deerfield Beach Fla.)24(1), 13–33 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited